Agile Overview

Balachander Swaminathan (bala@thoughtworks.com)

© ThoughtWorks, 2007

mailto:bala@thoughtworks.com
mailto:bala@thoughtworks.com

Agenda for this session

The Story of Software Development

© ThoughtWorks, 2007

-

The Story of Software Development...

We started off with Software Engineering...

© ThoughtWorks, 2007 3

-

IEEE defines Software Engineering as....

/“Software Engineering is the application of\
a systematic, disciplined, quantifiable

approach to development, operation and
maintenance of software: that is, the

application of engineering to software.”
IEEE Standard Computer Dictionary,
ISBN 1-55937-079-3, 1990

- /

© ThoughtWorks, 2007 4

Who does Software Engineering?

© ThoughtWorks, 2007

ThoughtWorks'

Who does Software Engineering?

© ThoughtWorks, 2007 5

For the space shuttle’s operating system

© ThoughtWorks, 2007

For the space shuttle’s operating system

© ThoughtWorks, 2007 6

Some Statistics - NASA’s Defect Density

© ThoughtWorks, 2007

-

Some Statistics - NASA’s Defect Density

The last 11 versions of the
space shuttle’s 420,000 line
systems had a total of 17
defects.

© ThoughtWorks, 2007

Some Statistics - NASA’s Defect Density

5.00

The last 11 versions of the
space shuttle’s 420,000 line 3.75
systems had a total of 17
2.90
defects.

1.25

0

B Industry B NASA
o

0.004

s

Defect Density (bugs/KLOC)

© ThoughtWorks, 2007

7

One More Data Point

B Industry B NASA
5.000

0.004

Defect Density

© ThoughtWorks, 2007

One More Data Point

B Industry [NASA B Industry [NASA
5.000 850.0

0.004 5.0

Defect Density Cost ($/LOC)

© ThoughtWorks, 2007 8

Another real software engineering project

© ThoughtWorks, 2007 9

-

Another real software engineering project

Safeguard - Ballistic Missile Defense System

© ThoughtWorks, 2007 9

-

Another real software engineering project

Safeguard - Ballistic Missile Defense System

e 1969-1975, 5407 person years code &
e Hardware designed at the same design unit test
time as software specs being 20 % 18 %

written
e Late changes in requirements not
] reqmts
an option 20 %

integration
testing
42 %

© ThoughtWorks, 2007 9

-

Another real software engineering project

Safeguard - Ballistic Missile Defense System

e 1969-1975, 5407 person years code &
e Hardware designed at the same design unit test
time as software specs being 20 % 18 %

written
e Late changes in requirements not
] reqmts
an option 20 %

integration
testing
42 %

Did it Succeed?

© ThoughtWorks, 2007 9

Safeguard - Ballistic Missile Defense System...cont.

© ThoughtWorks, 2007 10

10

Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

© ThoughtWorks, 2007 10

10

-

Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

The project was delivered according to specifications

© ThoughtWorks, 2007 10

10

-

Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

The project was delivered according to specifications
Cost: $25 Billion (not adjusted)

© ThoughtWorks, 2007 10

10

-

Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

The project was delivered according to specifications
Cost: $25 Billion (not adjusted)
1969-1975, 5407 person years

© ThoughtWorks, 2007 10

10

-

Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

e The project was delivered according to specifications
e Cost: $25 Billion (not adjusted)

e 1969-1975, 5407 person years

Operational for 133 days - Project terminated in 1978

© ThoughtWorks, 2007 10

10

-

Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

e The project was delivered according to specifications
e Cost: $25 Billion (not adjusted)

e 1969-1975, 5407 person years

Operational for 133 days - Project terminated in 1978

‘By the time the 6-year anti-missile system project was
completed, the new missiles were faster than the anti-
missile missiles’

© ThoughtWorks, 2007 10

10

Where did things go wrong?

© ThoughtWorks, 2007

11

11

Where did things go wrong?

Software Engineering is a heavy weight methodology and such heavy
weight methodologies characteristically are most successful when:

— Requirements are stable

— Technology is well known and mature

— Everything happens as one would expect

— We are not taking on anything new or unknown
— We have done this many times before

© ThoughtWorks, 2007 11

11

Where did things go wrong?

e Software Engineering is a heavy weight methodology and such heavy
weight methodologies characteristically are most successful when:

— Requirements are stable

— Technology is well known and mature

— Everything happens as one would expect

— We are not taking on anything new or unknown
— We have done this many times before

Projects with these characteristics are few and far between.

© ThoughtWorks, 2007 11

Other Heavy Weight Methodologies

\

/I-Ieavy Weight

SEI/IEEE Project
Standards and
Definitions

Requirements
Management

KN
B

~

/

© ThoughtWorks, 2007

12

12

Other Heavy Weight Methodologies

\

/I-Ieavy Weight

SEI/IEEE Project
Standards and
Definitions

Requirements
Management

KN
B

~

/

Heavy weight methodologies work in some
instances, but there are high costs, and the
risk in using them in dynamic
environments is high.

© ThoughtWorks, 2007

12

12

So, heavy weight methodologies don’t seem to meet our
needs

Is there an alternative?

© ThoughtWorks, 2007 13

13

Lean Thinking

Agenda for this session

© ThoughtWorks, 2007

14

14

Lean Thinking — Eliminate Waste

e The Toyota Production System, 1988 (1978), Taichii Ohno
— Pull Scheduling - Just-in-Time Flow Taiichi
— Expose Problems - Stop-the-Line Culture

TOYOTA PRODLICTION SYSTEM

e Study Of 'Toyota’ Production System, 1981, Shigeo Shing(isssas
— Non-Stock Production - Single Minute Setup
— Zero Inspection — Automatic Error Detection at Every Step

© ThoughtWorks, 2007 15

15

ThoughtWorks:

Lessons from Queuing theory

Utilization (%)

Source: Beyond Agile Software Development Becoming Lean, Mary Poppendieck, Poppendieck.lic

© ThoughtWorks, 2007

-

Applying Lean Principles to Software Developmen

Traditional Process

Analysis
Design

Code

owill

Test

© ThoughtWorks, 2007 17

17

ThoughtWorks

Applying Lean Principles to Software Developmen

Traditional Process

© ThoughtWorks, 2007 17

17

ThoughtWorks

Applying Lean Principles to Software Developmen

Traditional Process

© ThoughtWorks, 2007 17

17

DUE 0
Applying Lean Principles to Software Development...cont.
A better way of doing the same
Time
Analysis

/ |

Design
Code
Test

© ThoughtWorks, 2007 18

18

ThoughtWorks

Applying Lean Principles to Software Development...cont.

A better way of doing the same

Time

End-to-End
small slices of
work

© ThoughtWorks, 2007 18

18

ThoughtWorks:

Applying Lean Principles to Software Development...cont.

A better way of doing the same

Time

End-to-End
small slices of —~

work

Mdone = 100 % usabD

© ThoughtWorks, 2007 18

18

Lean Principles applied to Software

Project Plan/Estimation

Requirements Gatherin

-

Use Cases /

\SY

Functional Spe

=

Inception &

&> Design
Specifications

g

Code

1

5

G L LB B

E7

% Test Q
% Fix / Integrate E

™M

&=

gggg%? E

G G G G El

Lt L L L

© ThoughtWorks, 2007 19

19

Lower cost of
change through higher quality software

Traditional cost profile
Cost
of Change
Requirements Analysis and Coding Testing in the Production
Design Large
| Time >
© ThoughtWorks, 2007 20

20

Lower cost of
change through higher quality software

Traditional cost profile
- Time spent:
Cost * Finding defects
of Change » Fixing Defects
* Regression Testing
* Deploying
\ /
Requirements Analysis and Coding Testing in the Production
Design Large
| Time >
© ThoughtWorks, 2007 20

20

Lower cost of
change through higher quality software

Traditional cost profile

/

Time spent:
Cost * Finding defects
of Change » Fixing Defects
* Regression Testing
* Deployin
__oPoying %

~

More defects
found

Agile system cost profile & corrected —
causes lower
cost of defect
Requirements Analysis and Coding Testing in the Production correction

Design Large N y
)

Time

© ThoughtWorks, 2007 20

ThoughtWorks:

New Methodologies Emerged

Crystal Family

© ThoughtWorks, 2007 21

21

Agenda for this session

Agile Values and Principles

© ThoughtWorks, 2007

22

22

ThoughtWorks’

© ThoughtWorks, 2007 23

23

ThoughtWorks:

© ThoughtWorks, 2007 23

23

2000

XP | Extreme Programming (Kent Beck)

DSDM | Dynamic System Development Method (Dane Faulkner)

FDD | Feature Driven Development (Jeff DelLuca)

SCRUM (Ken Schwaber)
Crystal (Alistair Cockburn)
Adaptive Software Development (Jim Highsmith)

Lean Software Development (Mary Poppendieck)

© ThoughtWorks, 2007 23

23

ThoughtWorks:

© ThoughtWorks, 2007 23

23

Agile
manifesto

© ThoughtWorks, 2007

23

23

“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Agile
manifesto

© ThoughtWorks, 2007 23

23

“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.

manifesto

© ThoughtWorks, 2007 23

23

“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.

. — Working software over comprehensive documentation.
manifesto

© ThoughtWorks, 2007 23

23

-
]
@

“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.
— Working software over comprehensive documentation.

m a n ifeStO — Customer collaboration over contract negotiation.

© ThoughtWorks, 2007 23

23

Agile
manifesto

-
L J
@

“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

— Individuals and interactions over processes and tools.
— Working software over comprehensive documentation.
— Customer collaboration over contract negotiation.

— Responding to change over following a plan.

© ThoughtWorks, 2007 23

23

-
L J
@

“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.
— Working software over comprehensive documentation.

m a n ifeStO — Customer collaboration over contract negotiation.

— Responding to change over following a plan.

That is, while there is value in the items on the right, we value the
items on the left more.”

© ThoughtWorks, 2007 23

23

Agile (XP) Values

© ThoughtWorks, 2007

24

24

Agile (XP) Values

© ThoughtWorks, 2007

24

24

Agile (XP) Values

communication

© ThoughtWorks, 2007

24

24

houghtWorks-

Agile (XP) Values

communication simplicity

© ThoughtWorks, 2007 24

24

Agile (XP) Values

communication

hought\Works

simplicity

feedback

© ThoughtWorks, 2007

24

24

houghtWorks:

Agile (XP) Values

communication simplicity

courage feedback

© ThoughtWorks, 2007 24

24

houghtWorks:

Agile (XP) Values

communication simplicity

courage feedback

Communication leads to valuable feedback which encourages simplicity which
allows for courage to change

© ThoughtWorks, 2007 24

24

houghtWorks:

Agile (XP) Values

communication

respect

courage feedback

Communication leads to valuable feedback which encourages simplicity which
allows for courage to change

© ThoughtWorks, 2007 24

24

Agile Process

Agenda for this session

© ThoughtWorks, 2007

25

25

How Agile fits into software delivery

= =

Business Case
Baseline Requirements/ Stories
Baseline Budget Develop

>

Z =

Working Software
Full Regression Test Suite
Business Realisation

>

= =

Support Documentation
Trained Support Staff

© ThoughtWorks, 2007 26

26

Agile development
Is an iterative and incremental process

~

= =

High level
requirements

© ThoughtWorks, 2007

27

27

Agile development

Is an iterative and incremental process

High level
requirements

e

© ThoughtWorks, 2007

27

27

Agile development

Is an iterative and incremental process

Y

High level
requirements

T

</ &

© ThoughtWorks, 2007

27

27

Agile development

Is an iterative and incremental process

Y

High level
requirements

e

T4 LW 4

© ThoughtWorks, 2007

27

27

Agile development
Is an iterative and incremental process

Y

High level
requirements

© ThoughtWorks, 2007

27

27

ThoughtWorks:
Agile development

Is an iterative and incremental process

~

e

High level

requirements release 1

© ThoughtWorks, 2007 27

27

ThoughtWorks:
Agile development

Is an iterative and incremental process

~

e

High level

requirements release 1

-

< ¥ T T

© ThoughtWorks, 2007 27

27

ThoughtWorks:
Agile development

Is an iterative and incremental process

~

e

High level

requirements release 1

-

T & g — release 2

© ThoughtWorks, 2007 27

27

ThoughtWorks:

Agile development

Is an iterative and incremental process

~

e

High level

requirements release 1

release 2

© ThoughtWorks, 2007 27

27

ThoughtWorks:

Agile development
Is an iterative and incremental process

~

£

High level

requirements release 1

N -
O & T T release 2

© ThoughtWorks, 2007

27

27

ThoughtWorks:
Agile development

Is an iterative and incremental process

~

£

High level

requirements release 1

N -
O & T T release 2

”
release 3
”

© ThoughtWorks, 2007 27

27

ThoughtWorks:
Agile development

Is an iterative and incremental process

~

e

High level

requirements release 1

-

O & T T release 2

”
release 3

© ThoughtWorks, 2007 27

27

ThoughtWorks:
Agile development

Is an iterative and incremental process

Support required at the
end of each release
=

High level

requirements release 1

-

O & T T release 2

”
release 3

© ThoughtWorks, 2007 27

27

Agile Practices

Agenda for this session

© ThoughtWorks, 2007

28

28

Pair
Programming

Story Wall

Velocity
Metrics

User
Stories

Agile Practices

IKO

TEAM

Retrospectives

Daily
Stand-ups

Iterations

Sustainable
Pace

© ThoughtWorks, 2007

29

29

Agile Practices

Automated Short
Build/Deploy Pair IKO Retrospectives Releases
Programming
Collective
Automated story wall Ll Ownership
Testing Stand-ups
Coding Velocity Iterations Co-location

Standards Metrics

_ User Sustainable On-site
Continuous Stories Pace C
Integration Ve

TEAM
ORGANIZATIONAL
© ThoughtWorks, 2007 29

29

Agile Practices

Automated Short
Build/Deploy Pair IKO Retrospectives Releases
Programming
[Collecti
Automated siory Wl ReleEilng vy Sollective
Testing Stand-ups
Simple Design
Coding Velocity Iterations Co-location
Standards Metrics
Test Driven
_ User Development Sustainable On-sit
Continuous Stories Pace SIte
Integration Customer
INDIVIDUAL
TEAM
ORGANIZATIONAL

© ThoughtWorks, 2007 29

29

Agenda for this session

Summary/Review

© ThoughtWorks, 2007

30

30

Summary

© ThoughtWorks, 2007

31

31

Summary

Use of Agile methodologies
— Helps handle changing requirements & priorities
— Lowers cost of change
— Provides better visibility into project progress
— Reduces risk
— Maximizes return on investment (business value prioritized)
— Encourages higher quality, simpler code
— Delivers business value early & often

© ThoughtWorks, 2007 31

31

Summary

Use of Agile methodologies

Helps handle changing requirements & priorities

Lowers cost of change

Provides better visibility into project progress

Reduces risk

Maximizes return on investment (business value prioritized)
Encourages higher quality, simpler code

Delivers business value early & often

But, with this capability comes
— Constant business involvement
— A need for more discipline
— Greater emphasis on testing

© ThoughtWorks, 2007 31

31

Questions?

© ThoughtWorks, 2007

32

32

LJE MEED
THREE MORE
PROGRAM —
MERS.

USE
AGILE
PROGRAM —
MING
METHODS.

AGILE PROGRAMMING
DOESNT JUST MEAN
DOTNG MORE WIORK
WITH FEWER PEOPLE.

© Scotl Adams, Inc/Dist. by UFS, Inc.

e R0 Soot Adame, Inc. D by UFS,inc

FIMD ME S0ME
WIORDS THAT QO
MEAN THAT AND

ASK AGATM.

1 T \
&

Fh-_

L

\ -

© ThoughtWorks, 2007

33

33

Thanks for attending!

Balachander Swaminathan (bala@thoughtworks.com)

© ThoughtWorks, 2007

34

mailto:bala@thoughtworks.com
mailto:bala@thoughtworks.com

