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The Story of Software Development...

We started off with Software Engineering...
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IEEE defines Software Engineering as....

/“Software Engineering is the application of\
a systematic, disciplined, quantifiable

approach to development, operation and
maintenance of software: that is, the

application of engineering to software.”
IEEE Standard Computer Dictionary,
ISBN 1-55937-079-3, 1990

- /
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Who does Software Engineering?
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Who does Software Engineering?
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For the space shuttle’s operating system
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For the space shuttle’s operating system
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Some Statistics - NASA’s Defect Density
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Some Statistics - NASA’s Defect Density

The last 11 versions of the
space shuttle’s 420,000 line
systems had a total of 17
defects.
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Some Statistics - NASA’s Defect Density
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One More Data Point
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One More Data Point
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Another real software engineering project
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Another real software engineering project

Safeguard - Ballistic Missile Defense System
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Another real software engineering project

Safeguard - Ballistic Missile Defense System

e 1969-1975, 5407 person years code &
e Hardware designed at the same design unit test
time as software specs being 20 % 18 %

written
e Late changes in requirements not
] reqmts
an option 20 %

integration
testing
42 %
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Another real software engineering project

Safeguard - Ballistic Missile Defense System

e 1969-1975, 5407 person years code &
e Hardware designed at the same design unit test
time as software specs being 20 % 18 %

written
e Late changes in requirements not
] reqmts
an option 20 %

integration
testing
42 %

Did it Succeed?
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Safeguard - Ballistic Missile Defense System...cont.
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Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics
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Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

The project was delivered according to specifications

© ThoughtWorks, 2007 10

10




-

Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

The project was delivered according to specifications
Cost: $25 Billion (not adjusted)
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Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

The project was delivered according to specifications
Cost: $25 Billion (not adjusted)
1969-1975, 5407 person years
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Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

e The project was delivered according to specifications
e Cost: $25 Billion (not adjusted)

e 1969-1975, 5407 person years

Operational for 133 days - Project terminated in 1978
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Safeguard - Ballistic Missile Defense System...cont.

Revised Project Statistics

e The project was delivered according to specifications
e Cost: $25 Billion (not adjusted)

e 1969-1975, 5407 person years

Operational for 133 days - Project terminated in 1978

‘By the time the 6-year anti-missile system project was
completed, the new missiles were faster than the anti-
missile missiles’
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Where did things go wrong?
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Where did things go wrong?

Software Engineering is a heavy weight methodology and such heavy
weight methodologies characteristically are most successful when:

— Requirements are stable

— Technology is well known and mature

— Everything happens as one would expect

— We are not taking on anything new or unknown
— We have done this many times before
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Where did things go wrong?

e Software Engineering is a heavy weight methodology and such heavy
weight methodologies characteristically are most successful when:

— Requirements are stable

— Technology is well known and mature

— Everything happens as one would expect

— We are not taking on anything new or unknown
— We have done this many times before

Projects with these characteristics are few and far between.
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Other Heavy Weight Methodologies

\

/I-Ieavy Weight

SEI/IEEE Project
Standards and
Definitions

Requirements
Management

KN
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Other Heavy Weight Methodologies
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Heavy weight methodologies work in some
instances, but there are high costs, and the
risk in using them in dynamic
environments is high.
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So, heavy weight methodologies don’t seem to meet our
needs

Is there an alternative?
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Lean Thinking

Agenda for this session
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Lean Thinking — Eliminate Waste

e The Toyota Production System, 1988 (1978), Taichii Ohno
— Pull Scheduling - Just-in-Time Flow Taiichi
— Expose Problems - Stop-the-Line Culture

TOYOTA PRODLICTION SYSTEM

e Study Of 'Toyota’ Production System, 1981, Shigeo Shing(isssas
— Non-Stock Production - Single Minute Setup
— Zero Inspection — Automatic Error Detection at Every Step
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ThoughtWorks:

Lessons from Queuing theory

Utilization (%)

Source: Beyond Agile Software Development Becoming Lean, Mary Poppendieck, Poppendieck.lic
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Applying Lean Principles to Software Developmen

Traditional Process

Analysis
Design

Code

owill

Test
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Applying Lean Principles to Software Developmen

Traditional Process
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Applying Lean Principles to Software Developmen

Traditional Process
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DUE 0
Applying Lean Principles to Software Development...cont.
A better way of doing the same
Time
Analysis

/ |

Design
Code
Test
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ThoughtWorks

Applying Lean Principles to Software Development...cont.

A better way of doing the same

Time

End-to-End
small slices of
work
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Applying Lean Principles to Software Development...cont.

A better way of doing the same

Time

End-to-End
small slices of —~

work

Mdone = 100 % usabD
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Lean Principles applied to Software
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Lower cost of
change through higher quality software

Traditional cost profile
Cost
of Change
Requirements Analysis and Coding Testing in the Production
Design Large
| Time >
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Lower cost of
change through higher quality software

Traditional cost profile
- Time spent:
Cost * Finding defects
of Change » Fixing Defects
* Regression Testing
* Deploying
\ /
Requirements Analysis and Coding Testing in the Production
Design Large
| Time >
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Lower cost of
change through higher quality software

Traditional cost profile

/

Time spent:
Cost * Finding defects
of Change » Fixing Defects
* Regression Testing
* Deployin
\__oPoying %

~

More defects
found

Agile system cost profile & corrected —
causes lower
cost of defect
Requirements Analysis and Coding Testing in the Production correction

Design Large N y
)

Time
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New Methodologies Emerged

Crystal Family
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Agenda for this session

Agile Values and Principles
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ThoughtWorks’
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ThoughtWorks:
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2000

XP | Extreme Programming (Kent Beck)

DSDM | Dynamic System Development Method (Dane Faulkner)

FDD | Feature Driven Development (Jeff DelLuca)

SCRUM (Ken Schwaber)
Crystal (Alistair Cockburn)
Adaptive Software Development (Jim Highsmith)

Lean Software Development (Mary Poppendieck)
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ThoughtWorks:
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Agile
manifesto
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“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Agile
manifesto
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“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.

manifesto
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“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.

. — Working software over comprehensive documentation.
manifesto
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“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.
— Working software over comprehensive documentation.

m a n ifeStO — Customer collaboration over contract negotiation.
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Agile
manifesto
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“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

— Individuals and interactions over processes and tools.
— Working software over comprehensive documentation.
— Customer collaboration over contract negotiation.

— Responding to change over following a plan.
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“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Ag | I e — Individuals and interactions over processes and tools.
— Working software over comprehensive documentation.

m a n ifeStO — Customer collaboration over contract negotiation.

— Responding to change over following a plan.

That is, while there is value in the items on the right, we value the
items on the left more.”
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Agile (XP) Values
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Agile (XP) Values

communication
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Agile (XP) Values

communication simplicity
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Agile (XP) Values

communication

hought\Works

simplicity

feedback
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Agile (XP) Values

communication simplicity

courage feedback
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houghtWorks:

Agile (XP) Values

communication simplicity

courage feedback

Communication leads to valuable feedback which encourages simplicity which
allows for courage to change
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Agile (XP) Values

communication

respect

courage feedback

Communication leads to valuable feedback which encourages simplicity which
allows for courage to change
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Agile Process

Agenda for this session
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How Agile fits into software delivery

= =

Business Case
Baseline Requirements/ Stories
Baseline Budget Develop

>

Z =

Working Software
Full Regression Test Suite
Business Realisation

>

= =

Support Documentation
Trained Support Staff
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Agile development
Is an iterative and incremental process

~

= =

High level
requirements
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Agile development

Is an iterative and incremental process

High level
requirements
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Agile development

Is an iterative and incremental process
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Agile development

Is an iterative and incremental process
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Agile development
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Agile development

Is an iterative and incremental process

~

e

High level

requirements release 1
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ThoughtWorks:
Agile development

Is an iterative and incremental process
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Agile development

Is an iterative and incremental process

~

e

High level

requirements release 1

release 2
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Agile development
Is an iterative and incremental process
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ThoughtWorks:
Agile development

Is an iterative and incremental process
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Is an iterative and incremental process
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ThoughtWorks:
Agile development

Is an iterative and incremental process

Support required at the
end of each release
=

High level

requirements release 1

-

O & T T release 2

”
release 3
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Agile Practices
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Pair
Programming

Story Wall

Velocity
Metrics

User
Stories

Agile Practices

IKO

TEAM

Retrospectives

Daily
Stand-ups

Iterations

Sustainable
Pace
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Agile Practices

Automated Short
Build/Deploy Pair IKO Retrospectives Releases
Programming
Collective
Automated  story wall Ll Ownership
Testing Stand-ups
Coding Velocity Iterations  Co-location

Standards Metrics

_ User Sustainable On-site
Continuous  Stories Pace C
Integration Ve

TEAM
ORGANIZATIONAL
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Agile Practices

Automated Short
Build/Deploy Pair IKO Retrospectives Releases
Programming
[ Collecti
Automated  siory Wl ReleEilng vy Sollective
Testing Stand-ups
Simple Design
Coding Velocity Iterations  Co-location
Standards Metrics
Test Driven
_ User Development Sustainable On-sit
Continuous  Stories Pace SIte
Integration Customer
INDIVIDUAL
TEAM
ORGANIZATIONAL
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Summary
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Summary

Use of Agile methodologies
— Helps handle changing requirements & priorities
— Lowers cost of change
— Provides better visibility into project progress
— Reduces risk
— Maximizes return on investment (business value prioritized)
— Encourages higher quality, simpler code
— Delivers business value early & often
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Summary

Use of Agile methodologies

Helps handle changing requirements & priorities

Lowers cost of change

Provides better visibility into project progress

Reduces risk

Maximizes return on investment (business value prioritized)
Encourages higher quality, simpler code

Delivers business value early & often

But, with this capability comes
— Constant business involvement
— A need for more discipline
— Greater emphasis on testing
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Questions?
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LJE MEED
THREE MORE
PROGRAM —
MERS.

USE
AGILE
PROGRAM —
MING
METHODS.

AGILE PROGRAMMING
DOESNT JUST MEAN
DOTNG MORE WIORK
WITH FEWER PEOPLE.
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Thanks for attending!

Balachander Swaminathan (bala@thoughtworks.com)
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