
1

Agile Software
Development

meets SF

Karlstad Group Meeting, Vienna 2008

Hans-Peter Korn

2

How Software Development (often) works:

3

Hard work with Software:

4

Developing (and using) IT-solutions means
merging

���� complicated but
trivial technical systems

���� with complex and not
trivial social systems

���� ���� forming a "hybrid" (= techno/social)
system:

5

Treating such "hybrid systems" like trivial
(technical) systems only is the most common
less useful misunderstanding.

Examples for this misunderstanding:

���� The "Waterfall-Model" states, that SW can be developed
by one linear step by step process

6

���� The requirements for and the design of the system can be
and have to be documented and reviewed completely before
the implementation is done

7

Earlier learning's:

���� "Bend" the waterfall to a spiral (Barry W. Boehm, 1988)
and
���� try & enhance it with "iterative prototyping"

Later learning's:

���� design & build the system incrementally: create first usable
parts / functions asap!

���� do it as simple as possible, use existing (buyable) solutions
as far as possible

���� pre-designed flexibility is good - AGILITY is even better!

8

Manifesto for Agile Software Development
We are uncovering better ways of developing

software by doing it and helping others to do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn
Ward Cunningham

Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

On February 11-13, 2001, at The Lodge at Snowbird ski resort in the Wasatch mountains of Utah,
seventeen people met to talk, ski, relax, and try to find common ground and of course, to eat. What
emerged was the Agile Software Development Manifesto. Representatives from Extreme
Programming, SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others sympathetic to the need for an alternative to
documentation driven, heavyweight software development processes convened.

Now, a bigger gathering of organizational anarchists would be hard to find, so what emerged from this
meeting was symbolic a Manifesto for Agile Software Development signed by all participants. The
only concern with the term agile came from Martin Fowler (a Brit for those who don't know him) who
allowed that most Americans didn't know how to pronounce the word 'agile'.

Alistair Cockburn's initial concerns reflected the early thoughts of many participants. "I personally
didn't expect that this particular group of agilites to ever agree on anything substantive." But his post-
meeting feelings were also shared, "Speaking for myself, I am delighted by the final phrasing [of the
Manifesto]. I was surprised that the others appeared equally delighted by the final phrasing. So we did
agree on something substantive."

9

Agility is the ability to change the body's position, and requires a combination of balance, coordination, speed,
reflexes, and strength. (From: http://en.wikipedia.org/wiki/Agility)

 Material to exercise the balance agility for children
Business agility is the ability of a business to change rapidly in
response to varying economic conditions by producing high
quality goods and services. (see: Nikos C. Tsourveloudi , Kimon P.
Valavanis (2002). "On the Measurement of Enterprise Agility". Journal of Intelligent

and Robotic Systems 33: 329-342.
(From: http://en.wikipedia.org/wiki/Business_Agility)

Agile software development is a conceptual framework for software engineering that promotes incremental
development iterations throughout the life-cycle of the project.
(The article: http://en.wikipedia.org/wiki/Agile_software_development offers a good first glance on agile software development.
Some of the following text is from this article)

"Agile software development" evolved in the mid 1990s as part of a reaction against "heavyweight" methods, as
typified by a heavily regulated, regimented, micro-managed use of the waterfall model of development. In
2001, prominent members of that community adopted the name "agile methods". Later, some of these people
formed "The Agile Alliance", a non-profit organization that promotes agile development. They created the
"Agile Manifesto", a canonical definition of agile development and accompanying agile principles.

Agile methods are a family of development processes, not a single approach to software development. Most of
them aim to minimize risk by developing software in short amounts of time by incremental iterations which
may last from one to four weeks. Each incremental iteration is a small entire software project including
planning, requirements analysis, design, coding, testing, and documentation with an available release (without
bugs) at the end of each iteration. At the end of each iteration, the team re-evaluates project priorities.

Agile methods emphasize face-to-face communication over written documents. Agile methods emphasize
working software as the primary measure of progress. Agile methods therefore produce very little written
documentation relative to other methods. This has resulted in criticism of agile methods as being undisciplined.
An answer to this criticism is, phrased by Alistair Cockburn as one of the "Agilistas", to see software
development as a "cooperative game of communication and invention". He grounded this view on Pelle
Ehn's "Work-Oriented Development of Software Artefacts"(1988) who considered software development in the
context of the philosophers Descartes, Marx, Heidegger and Wittgenstein. Considering this it turns out, that
software development can be understood as a "cooperative language game". This understanding changes the
character and importance of "documentation" dramatically: The documents are not longer (intermediate) result
of software development, they "only" serves as "design tools" (among others, like mock-ups and screen-
prototypes) to support the communication (e.g. between developers and users) to co-create a shared
understanding how the IT-application should work. The working application and not the documented
descriptions of requirements is the only relevant result of the design.

Seeing and DOING software design as a cooperative language game (=>
Wittgenstein) of communication and invention is one of the very important
bricks of that platform which is shared with SF.

10

Further key elements of Agile Software Development relating to SF:

>>> Principles behind the Agile Manifesto <<<
(see: http://www.agilemanifesto.org/principles.html)

• Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

� small steps with observable effects / results
• Welcome changing requirements, even late in development. Agile processes harness change for the

customer's competitive advantage.
� Change is occurring all the time.

• Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to
the shorter timescale.

� Putting positive difference to work; Small Actions - tiny next steps that make big differences
• Business people and developers must work together daily throughout the project.

� In-between - the action is in the interaction
• Build projects around motivated individuals.

� Clients are always cooperating. They are showing us how they think change takes place. As
we understand their thinking and act accordingly, cooperation is inevitable.

• Give them the environment and support they need, and trust them to get the job done.
� People have all they need to solve problems

• The most efficient and effective method of conveying information to and within a development team is
face-to-face conversation.

� the action is in the interaction; Meaning and experience are interactional constructed. We
inform meaning onto our experience and it is our experience at the same time. Meaning is not
imposed from without or determined from outside of ourselves. We in-form our world through
interaction.

• Working software is the primary measure of progress.
� Make use of what's there - not what isn't. Not heavy concepts but small changes leads to
larger changing step by step.

• Agile processes promote sustainable development.
� Every case is different - beware ill-fitting theory

• The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
� the action is in the interaction

• Continuous attention to technical excellence and good design enhances agility.
� Counters - whatever helps us forward; Affirm - what's already going well?

• Simplicity -- the art of maximizing the amount of work not done -- is essential.
� Radical simplicity

• The best architectures, requirements, and designs emerge from self-organizing teams.
� the action is in the interaction

• At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behaviour accordingly.

� Counters - whatever helps us forward; Affirm - what's already going well?

Further reading

http://www.agilealliance.org/ and http://apln.org/ and http://pmdoi.org
http://en.wikipedia.org/wiki/Agile_software_development
http://www.extremeprogramming.org/
Alistair Cockburn: Agile Software Development - The Cooperative Game (2nd Edition), Addison-Wesley
Professional; 2 edition (2006)

11

The following text is part of this book:

12

BASICS:

13

14

METHODOLOGIES: SPECIFIC, SIMPLE, PROOFED

ACCEPTING THE INCOMPLETENESS OF COMMUNICATION

15

16

17

18

SOME PHILOSOPHY ON BACKSTAGE

19

20

21

22

23

24

25

26

27

TREATING "HYBRID" SYSTEMS IN A TRIVIAL WAY ONLY - HANDLING MISTAKES CONSTRUCTIVELY

28

WE DECIDE FOR CHANCES,
NOT FOR RISKS:

MAKE MORE OF THAT WHAT WORKS -
BUT IN A DIFFERENT WAY FOR
DIFFERENT SITUATIONS:

29

COMMUNICATE & RADIATE "OSMOTIC":

30

31

32

SOCIAL CONSTRUCTED METHODOLOGY:

33

HOW ALL THIS WORKS - AN EXAMPLE OUT OF REAL LIFE:

34

35

WRAPPING UP:

36

37

38

AGILITY BEYOND SW-DEVELOPMENT:

