Agile Software
Development
meets SF

Karlstad Group Meeting, Vienna 2008

Hans-Peter Korn

How Software Development (often) works:

Hard work with Software:

AHAJOKES.COM

AHAJOKES.COM

BAODLILAN,

MMMH ... LOOKS LIKE Yo NEED TO

REFORMXT YOUR HD, REINSTALL ALL- Wiﬂdl}\'ﬁ
MOTHERBOARD, | ALSO SUGGEST Horre Edtior
YoU UPGRADE YOUR. 05.

2

ARy,

el
'“?.'{side

Reproduction rights obtainable from PIERO lnlnT I"'TSInE

winw, CartoonStock.com TOMIM

Developing (and using) IT-solutions means
merging i

=> complicated but
trivial technical systems

= with complex and not | 7 |
trivial social systems

-.:';':'.'.1;._'"“.\' e R . - ,-F-T._',_—‘_f_i:;—e;;_
"'f_::_‘-" "y x"“:‘? .1E'|._|. . : ‘:?':Er':.-ﬁqr._
‘%’“’ ‘/?;“ T "‘f'*;_"\&
'::r-.-!l' ‘_._;r-'!-'.f':'-"" ALl 1::‘._3'._-“. "(-d_ DETCI"Ed "._\I ';Fl\

qn,‘ “ A decisions about) Y
a o \ external
Ak 1 b i i
Il P e T \ k I e e

B i At IS - appearance L. :
S & bDEﬁSIGST%G E;P\K—«-ﬁ—f"_"} e BT s Decisions -\‘\L
Y ST Tl \ Decisions | | about program J
:::lm:l styha- 1 e o . \: ; _
b) A U D | about progra o R correctness |
A AT

structure et
A Designers I i 5;_._,-./—/ \11&'}

o
r(bamned decisions

A A A PATATAY
tion Testers
BUEEF'S & ubg:g%gi‘; P Programmers
ponsors i, A .
S II P
Business
Analysts

= = forming a ""hybrid' (= techno/social)

system: | R E
= -5

Treating such ""hybrid systems'' like trivial
(technical) systems only is the most common
less useful misunderstanding.

Examples for this misunderstanding:

=» The "Waterfall-Model" states, that SW can be developed
by one linear step by step process

=» The requirements for and the design of the system can be
and have to be documented and reviewed completely before
the implementation is done

Fais Fear]

. -

s

_—

e

-

L]
P PR

|
i Fresttory |y

N, el

\
B et e

]
[entrnte Sty
-

" _‘ | v e g _a_.-u Parke sty i iy -.__‘::::”_-_u |
e Gy ey »
p—— venhcle Pt | gy
_‘_i — o T i Mt Sesaing |/ :'::m-'_'l"_"l':'l
I o
T L])
— x i ™
¥ ol e g iuz
v ropereriopmid
lhﬂ',ﬂ vu Pimei h:- L Teh o mry —
- S— | - et
| L])
} i ¥
;Tuli-r"lw.r{] ", % -
| 1-:7; — L | -
e bty -
— s e
b o 3 1= porverowhunl WPV
» T iye WL el h
L
——
evERROR/
repartErron)
_— _'{ InError l and-state
| Moving .'/ separator
evAbort - ~
? T , N
Y M1
b / Imit Tesol e pviniialized 1
Yy 4 sv\ positionTool
Ready e ‘—ﬁ
. — orientTool .~ evDone
H”'“""/,f"’ Foriented — | Done
— _,/"f / L J
evContCmd e calculatingPath |_evCalcDone f
- :] /
movedrm | /
emmlmnalzed
=)
N EmergencyStop
fork MMMH"&HIDEIBCI
Knob
Object model
realizing t g :)
> 6 x) use cal Identify Functional and provides gas
" : ow info .
- QoS Requirements ;] Ventlator
Patient
Yaporizer
01 ’
Agent Reservoir
setAnesthesiaDepth . W
0.1 | getanestnesiaDepth] 1. gLeve:’D
Dell\.rer Anesthesm setAgentPercent
getAgentPercent select
1 setAgentType geilevel
e case N getAgentType
s % 0.1 1 0,1
) VaporizerView
Patient 1 shows
sllaboration \ JUE—
/ ’ \\‘ Al cl !
i Deliver Anesthesia | armingClass r—— Alarm Manager
\\ /’ n alarms
e =T raises 1 1
0.1

Earlier learning's:

=> "Bend'" the waterfall to a spiral (Barry W. Boehm, 1988)
and

=» try & enhance it with "iterative prototyping"

‘ Analysis —
Object Analysis A

Prototype Definition
Prespiral Planning
T >
Iterative Prototypes et
v
Q
, _ o
Testing Design &
Integration Testing A Y Architectual Design -5
Validation Testing Mechanical Design s
Increment Review (Party) Detailed Design g
v
<
Implementation Y
Translation
Unit Testing
Peer Review

Later learning's:

=» design & build the system incrementally: create first usable
parts / functions asap!

=» do it as simple as possible, use existing (buyable) solutions
as far as possible

=>» pre-designed flexibility is good - AGILITY is even better!

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others to do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there 1s value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

On February 11-13, 2001, at The Lodge at Snowbird ski resort in the Wasatch mountains of Utah,
seventeen people met to talk, ski, relax, and try to find common ground and of course, to eat. What
emerged was the Agile Software Development Manifesto. Representatives from Extreme
Programming, SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others sympathetic to the need for an alternative to
documentation driven, heavyweight software development processes convened.

Now, a bigger gathering of organizational anarchists would be hard to find, so what emerged from this
meeting was symbolic a Manifesto for Agile Software Development signed by all participants. The
only concern with the term agile came from Martin Fowler (a Brit for those who don't know him) who
allowed that most Americans didn't know how to pronounce the word 'agile'.

Alistair Cockburn's initial concerns reflected the early thoughts of many participants. "I personally
didn't expect that this particular group of agilites to ever agree on anything substantive." But his post-
meeting feelings were also shared, "Speaking for myself, I am delighted by the final phrasing [of the
Manifesto]. I was surprised that the others appeared equally delighted by the final phrasing. So we did
agree on something substantive."

Agility is the ability to change the body's position, and requires a combination of balance, coordination, speed,
reflexes, and strength. (From: http://en.wikipedia.org/wiki/Agility)

Material to exercise the balance agility for children

Business agility is the ability of a business to change rapidly in
response to varying economic conditions by producing high

quality goods and services. (see: Nikos C. Tsourveloudi , Kimon P.
Valavanis (2002). "On the Measurement of Enterprise Agility". Journal of Intelligent

and Robotic Systems 33: 329-342.)
(From: http://en.wikipedia.org/wiki/Business_Agility)

Agile software development is a conceptual framework for software engineering that promotes incremental

development iterations throughout the life-cycle of the project.
(The article: http://en.wikipedia.org/wiki/Agile_software_development offers a good first glance on agile software development.
Some of the following text is from this article)

"Agile software development" evolved in the mid 1990s as part of a reaction against "heavyweight" methods, as
typified by a heavily regulated, regimented, micro-managed use of the waterfall model of development. In
2001, prominent members of that community adopted the name "agile methods". Later, some of these people
formed "The Agile Alliance", a non-profit organization that promotes agile development. They created the
"Agile Manifesto", a canonical definition of agile development and accompanying agile principles.

Agile methods are a family of development processes, not a single approach to software development. Most of
them aim to minimize risk by developing software in short amounts of time by incremental iterations which
may last from one to four weeks. Each incremental iteration is a small entire software project including
planning, requirements analysis, design, coding, testing, and documentation with an available release (without
bugs) at the end of each iteration. At the end of each iteration, the team re-evaluates project priorities.

Agile methods emphasize face-to-face communication over written documents. Agile methods emphasize
working software as the primary measure of progress. Agile methods therefore produce very little written
documentation relative to other methods. This has resulted in criticism of agile methods as being undisciplined.
An answer to this criticism is, phrased by Alistair Cockburn as one of the "Agilistas", to see software
development as a ''cooperative game of communication and invention'. He grounded this view on Pelle
Ehn's "Work-Oriented Development of Software Artefacts"(1988) who considered software development in the
context of the philosophers Descartes, Marx, Heidegger and Wittgenstein. Considering this it turns out, that
software development can be understood as a "cooperative language game". This understanding changes the
character and importance of "documentation" dramatically: The documents are not longer (intermediate) result
of software development, they "only" serves as "design tools" (among others, like mock-ups and screen-
prototypes) to support the communication (e.g. between developers and users) to co-create a shared
understanding how the IT-application should work. The working application and not the documented
descriptions of requirements is the only relevant result of the design.

Seeing and DOING software design as a cooperative language game (=>
Wittgenstein) of communication and invention is one of the very important
bricks of that platform which is shared with SF.

Further key elements of Agile Software Development relating to SF:

>>> Principles behind the Agile Manifesto <<<
(see: http://www.agilemanifesto.org/principles.html)

e Qur highest priority is to satisfy the customer through early and continuous delivery of valuable
software.
=> small steps with observable effects / results
e Welcome changing requirements, even late in development. Agile processes harness change for the
customer's competitive advantage.
=>» Change is occurring all the time.

® Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to

the shorter timescale.

=>» Putting positive difference to work; Small Actions - tiny next steps that make big differences

® Business people and developers must work together daily throughout the project.
=>» In-between - the action is in the interaction

® Build projects around motivated individuals.

=> Clients are always cooperating. They are showing us how they think change takes place. As

we understand their thinking and act accordingly, cooperation is inevitable.
® Give them the environment and support they need, and trust them to get the job done.
=> People have all they need to solve problems

e The most efficient and effective method of conveying information to and within a development team is

Jace-to-face conversation.
=>» the action is in the interaction; Meaning and experience are interactional constructed. We
inform meaning onto our experience and it is our experience at the same time. Meaning is not

imposed from without or determined from outside of ourselves. We in-form our world through

interaction.
Working software is the primary measure of progress.
=> Make use of what's there - not what isn't. Not heavy concepts but small changes leads to
larger changing step by step.
Agile processes promote sustainable development.
=> Every case is different - beware ill-fitting theory
The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
=> the action is in the interaction
Continuous attention to technical excellence and good design enhances agility.
=>» Counters - whatever helps us forward; Affirm - what's already going well?
Simplicity -- the art of maximizing the amount of work not done -- is essential.
=» Radical simplicity
The best architectures, requirements, and designs emerge from self-organizing teams.
=>» the action is in the interaction
o At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behaviour accordingly.
=» Counters - whatever helps us forward; Affirm - what's already going well?

Further reading

http://www.agilealliance.org/ and http://apln.org/ and http://pmdoi.org
http://en.wikipedia.org/wiki/Agile_software_development

http://www.extremeprogramming.org/

Alistair Cockburn: Agile Software Development - The Cooperative Game (2nd Edition), Addison-Wesley
Professional; 2 edition (2006)

10

The following text is part of this book:

Agile Software
Development o

The Cooperative Game

BASICS:

The ideas in this book are based on
25 vears of development experience and
10 years of investigating projects directly.
The IBM Consulting Group asked me
to design its first object-oriented method-
ology in 1991. I looked rather helplessly at
the conflicting “methodology” books at
the time. My boss, Kathy Ulisse, and I
decided that I should debrief project
teams to better understand how they
really worked. What an eye-opener! The
words they used had almost no overlap
with the words in the books.

The interviews keep being so valuable
that I still visit projects with sufficiently
Interesting success stories to find out
what they encountered, learned, and
recommend. The crucial question I ask
before the interview is, “And would you
like to work the same way again?” When

W - 1 -

AGILITY

I am not the only person who is using
these ideas:

* Kent Beck and Ward Cunningham
worked through the late 1980s on
what became called Extreme Program-
ming (XP) in the late 1990s.

* Jim Highsmith studied the language
and business use of complex adaptive
systems in the mid-1990s and wrote
about the application of that language
to software development in his
Adaptive Software Development.

« Ken Schwaber and Jeff Sutherland

were constructing the Scrum method
of development at about the same
time, and many project leaders made
similar attempts to describe similar
ideas through the same years.

12

in February 2001

When a group of us met
and similarities,

to discuss our differences
we found we had a surprising aumber of
things in common. We selected the word

agile to describe our intent and wrote the
Agile Software Development Manifesto
(Appendix A).

We are still formulating the principles
that we share and are finding many other
Penple who could have been at that meet-
ing if they had known about it or if their
schedules had permitted their presence.

Core to agile software development 1S
the use of light-but-sufficient rules of
project behavior and the use of human-
and communication-oriented rules.

Agility implies maneuverability, a
characteristic that is more important now
than ever. Deploying software to the Web
has intensified software competition fur-
ther than before. Staying In business
volves not only getting software out
and reducing defects but tracking contin-

Uairy -

demandﬂ. Wiﬂﬂing N DUDLICTD 2wt

ingly involves winning at the software.
development game. Winming at the game
depends O und.erstandmg the game

being played.

The best d
agility in busines
(1997):

have found for

escription |
from Goldman

s CcOomes

“ Agility is dynamic, context-spe-
cific, aggressively change-embrac-

ing, and growth—oriented. It is not

about improving efficiency, cutting
costs, or battering down the busi-
ness hatches to ride out fearsome
competitive ‘storms.” It is about suc-
ceeding and about winning: about

succeeding in emerging competitive

arenas, and about winning profits,
market share, and customers in the

very center of the competitive storms
many companies NOw fear.”

METHODOLOGIES: SPECIFIC, SIMPLE, PROOFED

We base the series on these two core agﬂe methodologie& Whoever ig
ideas: selecting a base methodology to tailor
will want to find one that has already

* Different projects - need = different been used successfully in a similar sit-
processes or methodologies. uation. Modifying an existing meth-

« Focusing on skills, communicatio odology is easier than creating a new
and community allows the project to one and is more effective than using

be more effective and more agile than

focusing on processes one that was designed for a different

situation. Crystal Clear (Cockburn,
forthcoming) is a sample methodol-

ACCEPTING THE INCOMPLETENESS OF COMMUNICATION

. T T A ASA M LA AU DK,
Knowing that perfect communications are Impossible relieves you of

trying to reach that perfection. Instead, you learn to manage the incom-
pleteness of communication. Rather than try to make the requirements
document or the design model comprehensible to everyone, you stop
when the document is sufficient to the purpose of the intended audience.
“Managing the incompleteness of communications” is core to mastering
agile software development. 14

THINKING INEXACT THOUGHTS

We don’t notice what is in front of us,
and we don’t have adequate names for
what we do notice. But it gets worse:
When we go to communicate, we don’t
even know exactly what it 1S we mean to
communicate. '

Pelle Ehn describes software design simi-

larly. Recognizing that neither the users

nor the designers could adequately iden-

tify, parse, and name their experiences, he

asked them to design by doing. In the article

reproduced in Appendix B he writes:

“The language-games played in
design-by-doing can be viewed both
from the point of view of the users
and of the designers. This kind of
design becomes a language-game in
which the users learn about possibili-
ties and constraints of new computer
tools that may become part of their
ordinary language-games. The
designers become the teachers that
teach the users how to participate in
this particular language-game of
design. However, to set up these
kinds of language-games, the design-
ers have to learn from the users.

“However, paradoxical as it
sounds, users and designers do not
have to understand each other fully
in playing language-games of
design-by-doing together. Participa-
tion in a language-game of design
and the use of design artifacts can

- make constructive but different sense

to users and designers.”

15

A Cooperative Game of
Invention and Communication

A fruitful way to think about software development is to consider it as a
cooperative game of invention and communication.

So, WHAT Do | Do ToMoRrow?

The mystery is that we can’t get perfect -

communication. The answer to the mys-
tery is that we don’t need perfect commu-
nication. We just need to get close
enough, often enough.

ca - sa i

In the second article in the appendix,
Pelle Ehn describes the difficulty he and
his programmers had communicating
with their computer-ndive users in the
1970s. Surprising most people (including
me), he wrote that complete communica-
tion is not necessary:

“... paradoxical as it sounds, users and
designers do not have to understand
each other fully in playing language-

games Of design-by-doing together.
Participation in a language-game of
design and the use of design artifacts
can make constructive but different
sense to users and designers” (see

page 416).

His insight is relevant again today, when
ethnographers and user experience
designers still try to understand the work
habits of users and from that understand-
ing construct a good user interface. At a
time when we work so hard to under-
stand our users, it is good to be reminded
that complete communication is not pos-
sible... but it is also not required. What is
required is to play the language-game,
acting and reviewing the feedback over
and over in never-ending cycles of
lmpifﬂving_'utﬂity. :

16

T TR

4 - I::rml::l‘tlel‘l ACU

A GAME OF INVENTION AND

COMMUNICATION e evelopment
We have seen that _=1 i g0al seeking, finie,
is a group game, Whic ‘hich consists
and cooperative. The tearm, e special-
of the sponsor, the TS ;gizgi;:ﬁs testers,
; in specialists, /

B o ogeher i the oo
of producing a working and ”58&11. S:";;
tam. In most cases, teain members alm
pmduc!‘.' the system as qllldd}' a5 PUEE'I.IJIE:
but they may prefer to focus on ease of
use, cost, defect freedom, or liability pro-
L‘EC‘H.QII. oy ®

The game is finite because it is over
when the goal is reached. Sometimes deliv-
ery of the system marks the termination
point; sometimes the end comes a bit later.
Funding for development usually changes
around the time the system is delivered,
and new funding defines a new game. The
next game may be to improve the system,
tc:: replace the system, to build an entirely
different system, or possibly to disband the
group.

The game is cooperative because the
T e o P <3 olher o
: - measur
ity as a team is how well
:rr:d communicate during

EAsure is used bECEIUSE
well they reach the goal.

If it is a 1-di
what does Soni-directed

constitutes

e of their qual-
they cooperate
the game. This
1t affects how

cooperative game
the Bame consist gf7 %ﬂhat‘
moves in the game?

3 developers is thig.

o task facing the ig;
TI.:I are working on a problem th'flt thEy
4 n}:i l-_u“}f Lmderstand_. one that lives in
D wishes, and thoughts and that

tions,
- Lo roceed. They need to

changes as they P

. Understand the problem space

» Imagine some mechanism that solves
the pmblem in a viable technology
EP'&-CE ;

« Express that mental construct in an
executable language, which lacks
many features of expression, to a
system that is unforgiving of mistakes

To work through this situation, they

« Use props and devices to pull
thoughts out of themselves or to gen-
erate new ideas that might help them
understand the problem or construct a
solution

* Leave trails of markers for those who
will come later, markers to monitor
and test their progress and their
understanding, and they use those
markers again, themselves, when they
revisit parts of their work

Software development is therefore a
cooperative game of invention and commu-
nication, Tl"lEI'E is l'IDtl‘iiI‘ig in the gﬂl’l‘lE but
People’s ideas and the communication of

those ideas to their colleagues and to the
computer, '

Lﬂnkiﬂg back at the literature of our

EEid.ﬂ We Sep -
ulated thijs a few people who have arti

before. Peter Naur did, in his -

1985 article "ng,ranmﬁng as Theory
Building,” and Pelle Ehn did, in “Scandi-
navian Design: On Participation and
Skill” (1992) and in his magnificent but
out-of-print book Work-Oriented Design of
Software Artifacts (1988). Naur and Ehn
did this so well that I include those two
articles in near entirety in Appendix B.
Robert Glass and colleagues wrote about
it in “Software Tasks: Intellectual or
Clerical?” (1992), and Fred Brooks saw it
as such a wickedly hard assignment that

he wrote the article “No Silver Bullet”
(1995).

SOME PHILOSOPHY ON BACKSTAGE

NAUR

From Peter Naur’s writing, we get the
idea that the team is working to create a
common theory for their work. In terms
of the Swamp Game (p. 49), the team
starts off not knowing what they are sup-
posed to build, where in the swamp to
build it, or what the layout of the swamp
is. The theory they are building is the
answer to those three questions.

Part of the communication aspect of the
cooperative game is establishing a shared
direction for the team and a shared view
of what the results need to look like. This
is called common vision in some writings.
Naur’s theory includes this idea and also
a common understanding of why the
thing is put together the way it is.

EHN

Common vision and common under-
standing of why the thing is put together
the way it is are both part of any coopera-
tive game, and most certainly our cooper-
ative games of invention and
communication.

Naur’s discussion of theory building as
a personal activity helps us to understand
modes of transmitting understanding
from one person to another. There is noth-
ing that says that written documentation
is the best way to convey understanding;
possibly it is the worst. If we take the
challenge to “convey understanding,”
then we can experiment with different
ways until we find some that work better.

From Pelle Ehn’s writing, we get the idea
that the understanding of the task to be
done may never be perfect, but it may
never need to be perfect. The magic lies in
the back-and-forth between developer
and user, creating new understanding
about the task at hand and the tools being
Created.,

Itis easy to look at Ehn's team’s assign-
ment from 1986 and think that we are
long past the days when people couldn’t

understand how the computer could help
them. However, every organization work-
ing on improving their organizational
process is faced with this problem. Until
the system gets delivered and put into
use, there is really no way that the users
can tell how the presence of the new sys-
tem will change the ways they work with
each other, and the ways they carry out
their jobs.

18

P

el ;
Ehﬁ.thtgensteln'ﬂ Language Gamas * 407

g EHN, WITTGENS ’
PELLE - TEIN'S LANGUAGE GAMES

g wﬂrk,gm:ted Development of Software
tificts (Ehn 1988), Pelle Ehn describes a
oS of ijects that explored ways of
naking software more appropriate to its
qse, easier to use, and made by both
mers and end users.
Pm’[‘h ! high point of the book for me is the
way in which he considers software
Jevelopment in the context of four philos-
ath Descartes, Marx, Heidegger, and
Wittgenstein.

A person working in the style of Des-
grtes thinks of an external reality worth
describing and turns her efforts toward
apturing that reality. She is therefore
‘nterested in the match to reality of the
rquirements, models, and code. This
Carfesian approach filled our field’s first
halfcentury.

henefit? How dloes its deployment change

[? 15 ?ﬂl}?_ the style of Wittgenstein that
OPposes the style of Descartes. A person
working in this style views the unfolding
of the software design as the unfolding of
alanguage game, in which new words are
added to the language over time.

This immediately links to software
Flevelnpmﬂnt as a cooperative game of
invention and communication. [proba-
bly owe a good deal of my construction of
the cooperative game model to Ehn's
writings. I had read and forgotten the fol-
lowing article years before working out
the cooperative game idea. As | started to
write this book, I reviewed this article and
was shocked to see how many of my
words echoed Ehn's. :

Ehn is concerned with the building of
shared experience through shared prac-
tice, of using practice directly as a basis
for discovering needs. In other words, he
is working with tacit knowledge. More
than that, he highlights the place of skill in
read Musashi’s words pointing out much
the same). Although skill is a topic [have

ordinary language pkflﬂﬂtéﬂghy of Ludwig
Wittgenstein. My focus is on the shift in
design from language as description
towards language as action.

Rethinking Systems Descriptions
aescripﬁiﬂiriences with the UTOPIA
Qur Z:,Ese d me to re-examine my
prq}ect hiCa] ag,gumptiﬂﬂﬁ-. WDrklng with
phllung’ISe rs of the design, the graphicg
the end L design methods failed

me
workers, 5O 5 ‘
while others succeeded. Requirement speci-

cations and systents descriptions based on

information from interviews were not very
successful. Improvements came when we

made joint visits to interesting plants,
trade shows, and vendors and had dis-
cussions with other users; when we dedi-
cated considerably more time to learning
from each other, designers from graphics
workers and graphics workers from
designers; when we started to use design-by-
doing methods and descriptions such as mock-
ups and work organization games; and when
e Started to understand and use tradi-
, 015 as a design ideal for com-

e

?.'_[ﬁ:-'a?f--’-racﬁce Is Reality

= PI’ﬁCtICE as the social construction of
S4By 1S a strong candidate for replacing
picture theory of reality. In short, prac-
IS our everyday practical activity. It is
wuman form of life. It precedes subiject-
ct relations. Through practice, we pro-

also a social activity; it is pro-
yperation with others. To share
o to share an understandin_g

I with others. However, this

1

Against this background, we can
understand the design of computer
applications as a concerned social- and
historical-conditioned activity in which
tools and their use are envisioned. This is
an activity and form of knowledge that is
both planned and creative.

Once struck by the “naive” Cartesian
presumptions of a picture theory, what
can be gained in design by shifting focus
from the correctness of descriptions to
intervention into practice? What does it
imply to take the position that what a pic-
ture describes is determined by its use?
Most importantly, it sensitizes us to the cru-
cial role of skill and participation in design,
and to the opportunity in practical design
to transcend some of the limits of formal-
ization through the use of more action-

oriented design artifacts.

g
L#&ﬂﬁhﬂgnﬂge as Action

e = ¥ %ok t..uun__ux,\:.

To master the professional language of
chairmaking means to be able to act in an
effective way together with other people
who know chairmaking. To “know” does
not mean explicitly knowing the rules
you have learned, but rather recognizing
when something is done in a correct or
incorrect way. To have a concept is to
have learned to follow rules as part of a
given practice. Speech acts are, as a un‘ity
of language and action, part of practice.
They are not descriptions but below I will

L= e = e R

21

Language-Games
To use language is to participate in lan-

guage-games. In discussing how we in
g 1 J . S w e T
Language-games, like the games we

play as children, are social activities. To be
able to play these games, we have to learn
to follow rules, rules that are socially cre-
ated but far from always explicit. The rule-
following behavior of being able to play
together with others is more important to a
garme than the specific explicit rules. Playing
IS Interaction and cooperation. To follow

the rules in practice means to be able to act in

a way t :
Thgi Ea:,‘ Others in the game can understand .

Knowledge and Design Artifacts

As designers we are involved in
reforming practice, in our case typically
computer-based systems and the way
people use them. Hence, the language-
games of design change the rules for
other language-games, in particular those
of the application’s use. What are the con-
ditions for this interplay and change to
operate effectively?

A common assumption behind most
design approaches seems to be that the
users must be able to give complete and
explicit descriptions of their demands.
Hence, the emphasis is on methods to
support this elucidation by means of
requirement specifications or system
descriptions (Jackson, 1983; Yourdon,
1982).

In a Wittgensteinian approach, the
focus is not on the “correctness” of sys-
tems descriptions in design, on -hnw well
they mirror the desires in the mind of ’rfhe
users, or on how correctly they de‘scrlbe
existing and future systems a%'tcl thel_rf uai.:e.
Systems descriptions are design artifac ;1
In a Wittgensteinian approach, the cruci;

uestion is how we use them, that 1is,

what role they play in the design process.

The rejection of an emphasis on the
“correctness” of descriptions 1'- t‘spm‘.mll}j
important. In this, we are advised by the
author of perhaps the strongest argu-
ments for a picture theory and the Carte-
sian approach to dﬂsign—thf: }TL.I“S
Wittgenstein in Tractatus Luglcc?-l hf_lu-
sophicus (1923). The reason for this rejec-
tion is the fundamental role of practical
knowledge and creative rule following in
language-games.

Nevertheless, we know that systems
descriptions are useful in the language-
game of design. The new orientation sug-
gested in a Wittgensteinian approach is
that we see such descriptions as a special
kind of artifact that we use as “typical
examples” or “paradigm cases.” They are
not models in the sense of Cartesian mirror
images of reality (Nordenstam, 1984). In1 the
language-game of design, we use these tools as
reminders for our reflection on future com-
puter applications and their use. By using
such design artifacts, we bring earlier experi-

ences to mind, and they bend our way of

thinking of the past and the future. 1 think
that this is why we should understand
them as representations (Kaasboll, forth-
coming). And this is how they inform our
practice. If they are good design artifacts,
they will support good moves within a specific
design language-game.

_ The meaning of a design artifact is its use
in a design language-game, not how it “miy-
?"B?'S mﬂiﬂy” Its ﬂblhh{ to sumnnrt ciicl siaa

23

They could be experienced throush =i
practical use of a prototype or m;:,c-ﬂ
This experience could be further refia.
upon in the language-game of deci—

Design by Doing: New “Rules of

the Game”™

What do we as designers have to do to
qualify as participants in the language-
games of the users? What do users have
to learn to qualify as participants in the
language-game of design? And what
means can we develop in design to facili-
tate these learning processes?

If designers and users share the same
form of life, it should be possible to over-
come the gap between the different lan-
guage-games. It should, at least in

=

-
=1

o fr

between the two language-games.

What kind of design tools could support
this interplay between language-games? |
think that what we in the UTOPIA project
called design—by-doing methods—proto-
typing, mockups, and scenarios—are good
candidates. Even joint visits to workplaces,
especially ones similar to the ones being
designed for, served as a kind of design
tool through which designers and users
bridged their language-games.

The language-games played in design-
by-doing can be viewed both from the

However, paradoxical as it sounds,
users and designers do not have to under-
stand each other fully in playing lan-

guage-games of design-by-doing together.

24

participation in a langya

design and the use of des%;ngae;gfaail; C;_‘:
make constructive but different sense to
users and designers. Wittgenstein (1953)
notes that “when children play at trains
their game is connected with their knowl-
edge of trains. It would nevertheless be
possible for the children of a tribe unac-
quainted with trains to learn this game
from others, and to play it without know-
ing that it was copied from anything. One
might say that the game did not make the
same sense as to us.” As long as the lan-
guage-game of design is not a nonsense
actrvity to any Pa_'[ﬁ{:lpant but a shared
activity for better underst'andi_ﬂg and
good design, mutual understanding may

" it
understanding. Not DII])—[could, for exam-

ple, the typographer workin at ¢
h
mockup tell that the screen shou%d be l::ig'zf

ger to show a full page spread—something
Important in page makeup—he could also
show what he meant by “cropping a

picture” by actually doing it as he said it. It
was thus possible for him to express his
practical understanding, his sensuous
knowledge by familiarity. He could, while
working at the mockup, express the fact
that when the system is designed one way
he can get a good balanced page, but not
when it is designed another way.

25

Finding a solu-
tion that works adequately in a particular

i reframing the problem
over and over as more 15 learned about th_e
material, the problem, and the set of possi-

le solutions.
F eDonald Gchon, a professor at MIT,

refers to this constant reframing as haffing
a “reflective conversation w_lt‘h the situa-
tion.” In The Reflective Practitioner (Schén
1983), he catalogs, among others, chemi-
cal engineers tackling a new problem.,

These chemical engineering graduate stu-
dents were asked to create a manufactur-

ing process to replicate a particular patina
on china that came from the use of cow
bone, which would soon become unavail-
able. The students progressed through
three stages in their work:

« They tried using chemical theory to
work out the reactions that were hap-
pening with the bone so that they
could replicate them. They got com-
pletely bogged down using this
approach.

* Abandoning theory as too difficult,
they next experimented with pro-
cesses in whatever form they could
think up. This also got them nowhere.

* Finally, their professor coached them
not to replicate the bone process but to
Fievise a process that resulted in a sim-
ilar effect. They combined bits of the-
ory with experiments to make
mmcremental progress, getting one cat-
egory of improvement at a time and

reducing the search space for future
work.

;Fheu_- t]’lil:d sta_ge shows their reflective
nnverfsatmn w_lth the situation. As they

T

26

TREATING "HYBRID" SYSTEMS IN A TRIVIAL WAY ONLY - HANDLING MISTAKES CONSTRUCTIVELY

People mistakenly think that since engi-
neers use mathematics in their craft, their
predictions about how long a project will

take (or how much it will cost) will be
similarly accurate. However, civil engi-
neers fail in the same way as the average

e developer when put in similar
As just one example, the

build ;ifhigl;iwﬁ?mm &&t}{

Incremental refers to a scheduling ang
staging strategy in which pieces of the Sys-
tem are developed at different rages or
times and integrated as they
developed.

Incremental development lets the team
learn about its own development process
as well as about the system being designed.
After a section of the system is built, the
team members examine their workin

dare

conventions to find out what should be

improved. They might change the team
structure, the techniques, or the deliver-

‘ables.

Incremental is the simpler of the two
methods to learn, because cutting the
project into subprojects is not as tricky as
deciding when to stop improving the
product. Incremental development is a
critical success factor for modern projects
(Cockburn 1998). _

The very reason for-incxemmf'ttal and :5
ative strategies is to allow for people’s
Ej’__'_,"“ﬁhm@ﬁﬁs‘takes to be discovered
relatively early and repaired ina tidy man-

and hire someone who will promise
todoiit right the first time.”

In other words, the manager is saying that
he expects the development team not to
makel any major mistakes or to learn
anything new on the project.

One can find people who promise to
get things right the first time, but one is
unlikely to find people wha actually get

things right the first time. People make

mistakes in estimation, requirements,
design, typing, proofreading, installing,
testing ... and everything else they do.
There is no escape. We must accept that
mistakes will be made and use processes
that adjust to the fact of mistakes.

Given how obvious it is that people
make mistakes, the really surprising thing
is that managers still refuse to use incre-
mental and iterative strategies. I will
argue that this is not as surprising as it
aPF'ie_am, because it is 'am:hnre«_:] in two
failure modes of humans: preferring to
fail conservatively rather than risk suc-

ceeding differently; and having difficuty

ing habits.

27

WE DECIDE FOR CHANCES,

NOT FOR RISKS:

lLLusions oF CHOICE

Piattelli-Palmarini cites a dual experiment. |0
the first, people are given $300 and then
have to choose between a guaranteed
$100 more or a 50/50 chance at $200
e,

People prefer to take the guaranteed
$100.

In the second, people are siven $500
and then have to choose between having
$100 taken away from them or a 50/50
chance of having $200 taken away from
them.

Pegple prefer to msk having $200 taken
from them.

(Piattelli-Palmarini, p. 58)

Mathematically, all outcomes are equal.
What is interesting is the difference in the
outcomes depending on how the problem
is stated.

Piattelli-Palmarini sums up the aspect
relevant to project managers: We are risk-
averse when we might gain.

MAKE MORE OF THAT WHAT WORKS -
BUT IN A DIFFERENT WAY FOR

DIFFERENT SITUATIONS:

Improve your environment:

* Collect a few work samples: an exam-
ple of some good code, a well-written
class comment, use case, project plan,
meeting minutes, design memo, or
user interface.

* Enlist a few others to do this, and put
the small collection of work samples
online for everyone to copy from.

* Reduce interruptions. Create a small
period each day, just two hours long,
in which you don't take interruptions.
See if a larger group in your office will
do the same.

» Reduce the need for mechanisms that
rely on people’s weaknesses.

e Increase the use of mechanisms that
draw on people’s strengths, and let
them use their talents.

Many people think I want people to always
sit closely together, just because COmMmuni-
cation 1s most effective when they are
close. The idea 1 wish to develop here is

Just because a strategy is good much of
the time doesn 't mean it is good all of the
tie.

The point is encoded in the project leader-
ship Declaration of Interdependence (see
http:/ /pmdoi.org): "We improve effec-
tiveness and reliability through situation-
ally specific strategies, processes and
practices.” The cooperative game model
serves to remind us that different situa-
tions call for different strategies and that
different strategies are called for at differ-
ent moments in the same game (an anal-
ogy is chess, with its different opening,
mid-game, and end-game strategies; the
same applies to projects). !
28

COMMUNICATE & RADIATE "OSMOTIC'":

2 The wording in the Posters Mmatters,
One XP team had posted “Things we diq
wrong last increment.” Another had
posted “Things to work on this incre.
ment.” Imagine the difference in the
projects: The first one radiated guilt into
the project room and was, not surpris-
ingly, not referred to very much by the
project team. The second one radiates
promise. The people on the second team
referred to their poster quite frequent]

29

m.l.; r:;}gr Cimers give mixed reviews to
outside-of-work team-building exercises,
Several said, roughly, “I'm not interested in
whether we can barbeque together or
climb walls together. I'm interested in
whether we can produce software

What does build teams? Luke Hohmann
offered this observation in an e-mail note:

“The best way to build a team is by
having them be successful in pro-
dﬂﬂlrgmsults. Small ones, big ones.

% It doesn't matter. This belief has
empirical support; see, tor instam:e,
Brown (1990). Fuzzy team building
is (IMO) almost always a waste of
time and money.”

Support for this is also found in Weick’s
description of the importance of “small
wins” (Weick 2001) as well as in inter-
views of successful project managers.

One successful project manager told of
a key moment when the project morale
and “team”-ness improved. We found the
following elements in the story:

* The people, who sat in different loca-
tions, met each other face to face.

* Together, they accomplished some sig-
nificant result that they could not have
achieved without working together.

* At some point, they placed them-
selves in some social jeopardy (ven-
turing new thoughts, or admitting
ignorance) and received support from
the group when they might have been

- attacked.

—— "

Meeting

g D

Programming

oo o8 |

|

-HEN:

|

|

. Pl"f"(ﬂf’el

oo Og

|

Customer

Office 2

e e e ——

J

Server/ Office
Equipment

Ao
[

7 Figure 3.1-1 Completed office layout (Courtesy
~ of Ken Auer, RoleModel Software).

SOCIAL CONSTRUCTED METHODOLOGY:

P

«Methodology 1s a social construction”
Ralph Hodgson told me in 1993. Two
years went by before I started to
understand.

Your “methodology” is everything you
regularly do to get your software out. It
includes who you hire, what you hire
them for, how they work together, what
they produce, and how they share. It is
the combined job descriptions, proce-
dures, and conventions of everyone on
your team. It is the product of your partic-
ular ecosystem and is therefore a unique

construction of your organization.
Boil and condense the subject of meth-

odology long enough and you get this
one-sentence summary: “A methodology
is the conventions that your group agrees

=S

32

HOW ALL THIS WORKS - AN EXAMPLE OUT OF REAL LIFE:

XP UNDER GLASS

Extreme Programming (XP) is an agile
methodology that illustrates the ideas in
this book very well. Additionally, it is
effective, well documented, and contro-
versial. Thus, it makes a wonderful sample
methodology to examine. At this point, we
finally have enough vocabulary to put it
under the methodology microscope.

The short story is that XP scores very
high within its area of applicability. It
(like all others) needs to be adjusted when
applied outside its sweet spot.

XP IN A NUTSHELL

The brief review of XP is in order (Beck 2000,
Jeffries 2001, XP <http://extremeprogram-
ing.com>). Following is a summary, as brief

as 1t would be if given as instructions over the
phone or email:

Use only 3 to 10 programmers. Arrange
for one or several customers to be on site to
provide ongoing expertise. Everyone
works in one room or adjacent rooms, pref-
erably with the workstations clustered,
monitors facing outward in a circle, half as
many workstations as programmers.

Do development in three-week peri-
ods, or iterations. Each iteration results in
running, tested code that is of direct use
to the customers. The compiled system is
rolled out to its end users at the end of
each release period, which may be every
two to five iterations.

The unit of requirements gathering is
the “user story,” user-visible functionality
that can be developed within one
iteration. The customers write the stories

33

Ly I Sl L b

o index cards-
ers nego-
the next

for the iteration onto simpl

The customer(s) and programit

tiate what will get done I

jteration in the following Way:

« The programmers estimate the time t0
complete each card. |

. The customers prioritize, alter, and
de-scope as needed so that the most
valuable stories are most likely to get
done in the allotted time period.

The programmers write the tasks for each
story on flipcharts on the wall or a white-
board, estimating the time they will need
for each task. Over time, the customers
and programmers can reprioritize or de-
scope the tasks or stories.
Development on a story starts with the
programmers discussing the story with
the expert customer. Because this discus-
sion is guaranteed to take place, the text
written on the story card can be very
to remind everyone
is o

A

these integrations, they ensure that
entire code base passes all unit tests, he

At any time, any two Programmer ¢
ting together may change any line gf 4
in the system. In fact, they are gupp{éﬂd
fo. Anytime the two find a section of C;;d
that appears hard to understand o m,EﬂE
complex, they are to revise it, anﬁam]}i
simplifying and improving it. Atall [f_mez
they are to keep the overall design as gy,
ple as they can and the code as clear 4
they can. This constant refactoring is pos-
sible because of the extensive unit fey
suites in place. It is also possible because
the programmers rotate pair assignmens
every day or so, and so knowledge of the
changes in the code structure passes
through the group through the shifting
parinerships.

While the ers are working
the customers are doing three things: They
visit with the programmers to i
ideas, they write system acceptance tet
to be run during and at the end of thei®"
ation, and they select stories to be builtfor
ﬁ'ﬁ next iteration may be on the
project full time or not, as they decide:
| '_I-'.tie- team holds a stand-up ﬂ'leéllﬂﬁ_
every day, in which they describe ¥
they are working on, what i 'Wﬂrhﬂ:g
well for them, and what they might
help with. The meeting is held stand/®
upto ond of each i

S

34

ahead and make improvements to the sys-
tem at any time.

One person on the team is designated
the “coach” for the team. This person
reviews with the team members their use
of the key practices: use of pair program-
ming and testing, pair rotation, keeping
design simple, communicating, and so on.

WRAPPING UP:

N et

e implies being effective and manei-
feg;;c;jllrineagﬂe pgr_ocess is both light and
sufficient. The lightness is a means 0
staying maneuverable. The sufficiency 18
a matter of staying in the game. _

The question for using agile metbn'dul—
ogies is not, “Can an agile me‘thadﬂlogy
be used in this situation?” but “How can
we remain agile in this situation?”

It seems the important questimn;q;

ask are:

AGILE

I. How does this technique work?

2. Why does this technique wnrk};

3. How is this technique relateqd to
other techniques that [am prac-
ticing?

4. What are the necessary precondi-
tions and postconditions to effec.
tively apply this technique in the
combative situation? . . |

ﬁs you develop a reasonable reper-
toire of techniques that you can per-
form correctly, you will need to
XPOse yourself to as broad a range
of practitioners as possible. As you
watch others, you need to ask and
dnswer at least three questions:

; Wl‘uch other practitioners do !
fespect and admire?

2. HDW 1S what they do different
from what [4o?

3 How cap | change my practice
.{bﬂt-h' mental mode] and attempt*
40 COIrespond to it) to incorp?
Tate the differences that I thi
AT most importants ...

SevEN PROPERTIES OF HIGHLY
SuccesSFUL PROJECTS

s Frequent Delivery. Have we delivered
running, tested, and usable code at
least twice to our user community in
the last six months?

Reflective Improvement. Did we get
together at least once within the last
three months for a half hour, hour, or
half day to compare notes, reflect, dis-
cuss our group’s working habits, and
discover what speeds us up, what
slows us down, and what we might be
able to improve?

Close | Osmotic Communication. For
Crystal Clear projects: Does it take us
30 seconds or less to get our question
to the eyes or ears of the person who
might have the answer? Do we over-
hear something relevant from a con-
versation among other team members
at least every few days? For other
Crystal colors, replace those specific
times with an inquiry into how long it
takes to get a question to the right per-
son, and the frequency of serendipi-
tous discovery.

* Personal Safety. Can we tell our boss

we misestimated by more than 50 per-
cent or that we just received a tempt-
ing job offer? Can we disagree with
him or her about the schedule in a
team meeting? Can we end long
debates about each other’s designs
with friendly disagreement?

Focus. Do we all know what our top
two priority items to work on are? Are
we guaranteed at least two days in a
row and two uninterrupted hours
each day to work on them?

Easy Access to Expert Users. Does it
take less than three days, on the aver-
age, from when we come up with a
question about system usage to when
an expert user answers the question?
Can we get the answer in a few hours?
Techrnical Environment with Automated
Tests, Configuration Management, and
Frequent Integration. Can we run the
system tests to completion without
having to be physically present? Do
all our developers check their code
into the configuration management
system? Do they put in a useful note
about it as they check it in? Is the sys-
tem integrated at least twice a week?

36

TECHNIQUES A DISCRETION

~ Here is short summary of interest
| gqatﬁgmsand techniques for you to 5-.::;:1-
sider:
S wploratory 360". Pre-project safety
check. In a few days or a few weeks
~sample the project’s business value:
: llt;gj? uirements, domain model, technol-
.',Ei'_ ‘ogy plans, project plan, team makeup,
- and methodology.
_%ﬁr Victory. Small wins help a group
;' elop strength and confidence.
ange for some early in the project.
keleton is a great start.
1g Skeleton. A tiny implementa-
f the system that performs a
1d-to-end function. It need not
the final architecture, but it should
the main architectural compo-

re in stages, keeping the sys-

g as you go. This applies
he Walking Skeleton and to
il ﬁ

ng to ask anyone a
y it is large, visible to
rver, easily kept up to
rstandable at a glapcg,
periodically so that 1t 15

s : 2. Tw
Sit side-by-side but at diﬁereﬁtpxi?)];t

stati rorks
maei:?;lﬁ:nwurkmg on 'different assign-
1€ Workstations need to b

close enough that each person :
read the other’s Wworkstation 5'mea;n
?}’Hmrﬂf‘ng her head (60 cm-90 cm?o};
nzee;efi,l They help each other as
Test-Driven Development. The test, or
Exa'tu_table example, is written before
deciding how to design the code. It
serves both as a specification of what
to design and as a practice run at
using the call sequence to the func-
tion. Also called XXD (see page 275).
Blitz Planning. An index card-based
planning session in which the spon-
sor, business expert, expert user, and
developers together build the project
map and timeline. Unlike XP’s Plan-
ning Game, the cards in the Blitz Plan-
ning technique show tasks and task
dependencies.
Daily Stand-up Meeting. Everyone in
the team meets, standing, for a maxi-
mum of 10 minutes to announce what
they each are working on and where
they are getting stuck.

le Interaction Design. A one- or two-
day sticky note and index card-based
system usage modeling session, based
on the ideas in Software for Use o
stantine 1999). Described In Eation

2003).

37

AGILITY BEYOND SW-DEVELOPMENT:

THE DECLARATION OF INTERDEPENDENCE

As the manifesto grew 1n significance,
people asked

* What is the corresponding version for
non-software product development?

» What is the corresponding set of prin-
ciples and values for management?

Jim Highsmith notes that to understand
the agile manifesto for products at large
instead of just software, simply replace
the word product for the word soffware in
the manifesto, and the manifesto is still
clear and correct:

Working products over comprehen-
sive documentation;

Indeed, this is evidenced by the myriad
applications of the agile values and prin-
ciples outside of software already dis-
cussed in this book. Reread, in particular,
Mike Collins’ sidebar (p. 323) to see how
lean manufacturing already anticipated
what we wanted to say.

On the management side, a number of
people voiced an interest in exploring the
extension of the agile manifesto to project

—

management and product df.—_‘velﬂpn-m]“
outside software. We held the first Miept
ing to explore tha_nl topic at the A il
Development Cmntm‘fcncff in 2004, Thy
group met twice more, finally on Febiry-
ary 1, 2005, writing the six points of the
Declaration of Interdependence, or DOJ:

e

“We increase return on investment
by making continuous flow of value
our focus.

We deliver reliable results by
engaging customers in frequent inter-
actions and shared ownership.

We manage uncertainty through
iterations, anticipation, and adaptation.

We unleash creativity and inno-
vation by recognizing that individu-
als are the ultimate source of value and
by creating an environment where they
can make a difference.

We boost performance through
group accountability for results and
shared responsibility for team effective:
ness. |

We improve effectiveness and fEh
ability through situationally specifi

strategies, processes, and practices.”

i

38

