Agile Software
Development
meets SF

Karlstad Group Meeting, Vienna 2008

Hans-Peter Korn

How Software Development (often) works:

Hard work with Software:

AHAJOKES.COM

AHAJOKES.COM

BAODLILAN,

MMMH ... LOOKS LIKE Yo NEED TO

REFORMXT YOUR HD, REINSTALL ALL- Wiﬂdl}\'ﬁ
MOTHERBOARD, | ALSO SUGGEST Horre Edtior
YoU UPGRADE YOUR. 05.

2

ARy,

el
'“?.'{side

Reproduction rights obtainable from PIERO lnlnT I"'TSInE

winw, CartoonStock.com TOMIM

Developing (and using) IT-solutions means
merging i

=> complicated but
trivial technical systems

= with complex and not | 7 |
trivial social systems

-.:';':'.'.1;._'"“.\' e R . - ,-F-T._',_—‘_f_i:;—e;;_
"'f_::_‘-" "y x"“:‘? .1E'|._|. . : ‘:?':Er':.-ﬁqr._
‘%’“’ ‘/?;“ T "‘f'*;_"\&
'::r-.-!l' ‘_._;r-'!-'.f':'-"" ALl 1::‘._3'._-“. "(-d_ DETCI"Ed "._\I ';Fl\

qn,‘ “ A decisions about) Y
a o \ external
Ak 1 b i i
Il P e T \ k I e e

B i At IS - appearance L. :
S & bDEﬁSIGST%G E;P\K—«-ﬁ—f"_"} e BT s Decisions -\‘\L
Y ST Tl \ Decisions | | about program J
:::lm:l styha- 1 e o . \: ; _
b) A U D | about progra o R correctness |
A AT

structure et
A Designers I i 5;_._,-./—/ \11&'}

o
r(bamned decisions

A A A PATATAY
tion Testers
BUEEF'S & ubg:g%gi‘; P Programmers
ponsors i, A .
S II P
Business
Analysts

= = forming a ""hybrid' (= techno/social)

system: | R E
= -5

Treating such ""hybrid systems'' like trivial
(technical) systems only is the most common
less useful misunderstanding.

Examples for this misunderstanding:

=» The "Waterfall-Model" states, that SW can be developed
by one linear step by step process

=» The requirements for and the design of the system can be
and have to be documented and reviewed completely before
the implementation is done

Fais Fear]

. -

s

_—

e

-

L]
P PR

|
i Fresttory |y

N, el

\
B et e

]
[entrnte Sty
-

" _‘ | v e g _a_.-u Parke sty i iy -.__‘::::”_-_u |
e Gy ey »
p—— venhcle Pt | gy
_‘_i — o T i Mt Sesaing |/ :'::m-'_'l"_"l':'l
I o
T L])
— x i ™
¥ ol e g iuz
v ropereriopmid
lhﬂ',ﬂ vu Pimei h:- L Teh o mry —
- S— | - et
| L])
} i ¥
;Tuli-r"lw.r{] ", % -
| 1-:7; — L | -
e bty -
— s e
b o 3 1= porverowhunl WPV
» T iye WL el h
L
——
evERROR/
repartErron)
_— _'{ InError l and-state
| Moving .'/ separator
evAbort - ~
? T , N
Y M1
b / Imit Tesol e pviniialized 1
Yy 4 sv\ positionTool
Ready e ‘—ﬁ
. — orientTool .~ evDone
H”'“""/,f"’ Foriented — | Done
— _,/"f / L J
evContCmd e calculatingPath |_evCalcDone f
- :] /
movedrm | /
emmlmnalzed
=)
N EmergencyStop
fork MMMH"&HIDEIBCI
Knob
Object model
realizing t g :)
> 6 x) use cal Identify Functional and provides gas
" : ow info .
- QoS Requirements ;] Ventlator
Patient
Yaporizer
01 ’
Agent Reservoir
setAnesthesiaDepth . W
0.1 | getanestnesiaDepth] 1. gLeve:’D
Dell\.rer Anesthesm setAgentPercent
getAgentPercent select
1 setAgentType geilevel
e case N getAgentType
s % 0.1 1 0,1
) VaporizerView
Patient 1 shows
sllaboration \ JUE—
/ ’ \\‘ Al cl !
i Deliver Anesthesia | armingClass r—— Alarm Manager
\\ /’ n alarms
e =T raises 1 1
0.1

Earlier learning's:

=> "Bend'" the waterfall to a spiral (Barry W. Boehm, 1988)
and

=» try & enhance it with "iterative prototyping"

‘ Analysis —
Object Analysis A

Prototype Definition
Prespiral Planning
T >
Iterative Prototypes et
v
Q
, _ o
Testing Design &
Integration Testing A Y Architectual Design -5
Validation Testing Mechanical Design s
Increment Review (Party) Detailed Design g
v
<
Implementation Y
Translation
Unit Testing
Peer Review

Later learning's:

=» design & build the system incrementally: create first usable
parts / functions asap!

=» do it as simple as possible, use existing (buyable) solutions
as far as possible

=>» pre-designed flexibility is good - AGILITY is even better!

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others to do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there 1s value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

On February 11-13, 2001, at The Lodge at Snowbird ski resort in the Wasatch mountains of Utah,
seventeen people met to talk, ski, relax, and try to find common ground and of course, to eat. What
emerged was the Agile Software Development Manifesto. Representatives from Extreme
Programming, SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others sympathetic to the need for an alternative to
documentation driven, heavyweight software development processes convened.

Now, a bigger gathering of organizational anarchists would be hard to find, so what emerged from this
meeting was symbolic a Manifesto for Agile Software Development signed by all participants. The
only concern with the term agile came from Martin Fowler (a Brit for those who don't know him) who
allowed that most Americans didn't know how to pronounce the word 'agile'.

Alistair Cockburn's initial concerns reflected the early thoughts of many participants. "I personally
didn't expect that this particular group of agilites to ever agree on anything substantive." But his post-
meeting feelings were also shared, "Speaking for myself, I am delighted by the final phrasing [of the
Manifesto]. I was surprised that the others appeared equally delighted by the final phrasing. So we did
agree on something substantive."

Agility is the ability to change the body's position, and requires a combination of balance, coordination, speed,
reflexes, and strength. (From: http://en.wikipedia.org/wiki/Agility)

Material to exercise the balance agility for children

Business agility is the ability of a business to change rapidly in
response to varying economic conditions by producing high

quality goods and services. (see: Nikos C. Tsourveloudi , Kimon P.
Valavanis (2002). "On the Measurement of Enterprise Agility". Journal of Intelligent

and Robotic Systems 33: 329-342.)
(From: http://en.wikipedia.org/wiki/Business_Agility)

Agile software development is a conceptual framework for software engineering that promotes incremental

development iterations throughout the life-cycle of the project.
(The article: http://en.wikipedia.org/wiki/Agile_software_development offers a good first glance on agile software development.
Some of the following text is from this article)

"Agile software development" evolved in the mid 1990s as part of a reaction against "heavyweight" methods, as
typified by a heavily regulated, regimented, micro-managed use of the waterfall model of development. In
2001, prominent members of that community adopted the name "agile methods". Later, some of these people
formed "The Agile Alliance", a non-profit organization that promotes agile development. They created the
"Agile Manifesto", a canonical definition of agile development and accompanying agile principles.

Agile methods are a family of development processes, not a single approach to software development. Most of
them aim to minimize risk by developing software in short amounts of time by incremental iterations which
may last from one to four weeks. Each incremental iteration is a small entire software project including
planning, requirements analysis, design, coding, testing, and documentation with an available release (without
bugs) at the end of each iteration. At the end of each iteration, the team re-evaluates project priorities.

Agile methods emphasize face-to-face communication over written documents. Agile methods emphasize
working software as the primary measure of progress. Agile methods therefore produce very little written
documentation relative to other methods. This has resulted in criticism of agile methods as being undisciplined.
An answer to this criticism is, phrased by Alistair Cockburn as one of the "Agilistas", to see software
development as a ''cooperative game of communication and invention'. He grounded this view on Pelle
Ehn's "Work-Oriented Development of Software Artefacts"(1988) who considered software development in the
context of the philosophers Descartes, Marx, Heidegger and Wittgenstein. Considering this it turns out, that
software development can be understood as a "cooperative language game". This understanding changes the
character and importance of "documentation" dramatically: The documents are not longer (intermediate) result
of software development, they "only" serves as "design tools" (among others, like mock-ups and screen-
prototypes) to support the communication (e.g. between developers and users) to co-create a shared
understanding how the IT-application should work. The working application and not the documented
descriptions of requirements is the only relevant result of the design.

Seeing and DOING software design as a cooperative language game (=>
Wittgenstein) of communication and invention is one of the very important
bricks of that platform which is shared with SF.

Further key elements of Agile Software Development relating to SF:

>>> Principles behind the Agile Manifesto <<<
(see: http://www.agilemanifesto.org/principles.html)

e Qur highest priority is to satisfy the customer through early and continuous delivery of valuable
software.
=> small steps with observable effects / results
e Welcome changing requirements, even late in development. Agile processes harness change for the
customer's competitive advantage.
=>» Change is occurring all the time.

® Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to

the shorter timescale.

=>» Putting positive difference to work; Small Actions - tiny next steps that make big differences

® Business people and developers must work together daily throughout the project.
=>» In-between - the action is in the interaction

® Build projects around motivated individuals.

=> Clients are always cooperating. They are showing us how they think change takes place. As

we understand their thinking and act accordingly, cooperation is inevitable.
® Give them the environment and support they need, and trust them to get the job done.
=> People have all they need to solve problems

e The most efficient and effective method of conveying information to and within a development team is

Jace-to-face conversation.
=>» the action is in the interaction; Meaning and experience are interactional constructed. We
inform meaning onto our experience and it is our experience at the same time. Meaning is not

imposed from without or determined from outside of ourselves. We in-form our world through

interaction.
Working software is the primary measure of progress.
=> Make use of what's there - not what isn't. Not heavy concepts but small changes leads to
larger changing step by step.
Agile processes promote sustainable development.
=> Every case is different - beware ill-fitting theory
The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
=> the action is in the interaction
Continuous attention to technical excellence and good design enhances agility.
=>» Counters - whatever helps us forward; Affirm - what's already going well?
Simplicity -- the art of maximizing the amount of work not done -- is essential.
=» Radical simplicity
The best architectures, requirements, and designs emerge from self-organizing teams.
=>» the action is in the interaction
o At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behaviour accordingly.
=» Counters - whatever helps us forward; Affirm - what's already going well?

Further reading

http://www.agilealliance.org/ and http://apln.org/ and http://pmdoi.org
http://en.wikipedia.org/wiki/Agile_software_development

http://www.extremeprogramming.org/

Alistair Cockburn: Agile Software Development - The Cooperative Game (2nd Edition), Addison-Wesley
Professional; 2 edition (2006)

10

The following text is part of this book:

Agile Software
Development o

The Cooperative Game

4!

'SIB9A Sures oY) 3NnoIy) seapl
Ie[IWIS 9qLIdSAp 03 sydwape repnuls
apewl s1aped] jo9loxd Auew pue ‘awn
aures Y} jnoge je juawdoPAdp jo
POIoOW WINIDG 3} JUioNIISuod arom

pUBIDING JJo[pue I3qemyds Uy e

‘Juamidojana(q dsvmifos aadvpyy

sty ur juswdo[eAdp aIemijos 03

aden3uef jel jo uongedrdde a3 noqe

0IM PUe SOE6L-PIW 9] Ul SUIDISAS

aanidepe xordwod Jo asn ssaursng pue
aden3due| a3 parpnys Prwusy3iy wif

'S0661 e[Y3 UL (JX) Suitu

-UDIB0L] dU243XT PI[[LD WL Jeym

uo sp861 @e[Sy} y3noiy} poxyIom
weysuruun)) pIepy pue doag Juay e

:Seapr asay]
Buisn st oym uosiad Aquo ayy jou we I

ALITIDY

UM\ ,culede Aem aures o3 ﬁ“ua, mﬂ uv:ﬁm
NoA p[nom puy,, ‘st MIIAIRIUT a3 muouam
jse [uonsenb eonn oy pusunuoss;
pue ‘psuies] ‘parejunodus Aoy jeym
N0 puy 0} S$ALI0IS $sa00ns Sunsarayur
Apusnyims ym syoafoxd FSIA [[1S | Eﬂ.
dlqeniea os ureq deay smarazeyur ay
'S)00q 91} Ul SPIOM 3y} Yjim
de[1aA0 ou jsowre pey pasn Lo sprom
] jIouado-ake ue jeyp) ‘paIom Afear
ASy} moy puejsiopun 19))9q 0} Sures}
olord JerIgep pmoys [eyl papoap
[pue ‘assin Ayiey ‘ssoq A -awm ayj
Je sjooq ,A3o[opoyjauwr, SUnIFUOd dYj
1e A1ssarday 1ayjer psyoo ["1661 Ul 45070
-poyjawr pajusrio-10alqo 3siy S uSIsap O3
Sw payse dnoin) Sunmsuo) JAGI YL
Ap2a11p syosloxd SuneSnsaaur Jo s1edA O]
Pue sdusLadxe juswdojessp JO SIBIA G
UO paseq are yooq sriyj ur seapl UL

-SOISVA

,1eaj mou sorueduwod Aueil

St11038 9A11RdUI0Dd |Yj JO 19D ATOA
S} Ul SIDUIOISND Pue ‘areys jodrewt
igygord Juruuim Noge pue ‘seuare
5ATIRAWIOD GuiBIowe Ul Surpadddns
jnoqe :dunmuim noge pub Furpaad
_Hns ynoge St 3] , SUHO3S, sArRdWod
JuosIeay No IpH O3 soyojey Ssau
snq dy} umop Guruapeq I0 ‘§3S02
Sumno “ADURIIO Suraoxduar noqe
you st 31 .ﬁmu_sﬂ.aé%o% pue ‘3ul

-HeIqUID-IBUED AoA1ssa133e DD

-9ds-3xa3u0d ispureudp St A3y,

{(£661)

Uepior) Wwoky sawod gsouisng Ut Ayijiov
10§ punoj aaey | wondunsap 1529 UL

-pakerd Furoq

wed oy JuipueisEpun o spuadap

sued oy e uTUUIM oured Juawudo[eAdP

BIEMIj0s ayy Je SURIUIM SoATOAUT Ajdur

VeV coamTTanNO 1 mgmggﬂa ﬂﬂucmawmu

-uguod Suppoer) Jnqg §32959p Juonpal pue
JNO 9IBMIJOS Gured AJuo jou S9AJOAUL
gsaursng Ul JGuifeyg -a10joq UeYy} JIoy3
_my uonreduIod aIeMHos payIsSuajul sey
QoM U} 03 d1BMIFOS Fuikorda(] 1949 Uelj
Mmou jueyroduir 210w ST jey3 dNSLIBOLIEHD)
e ‘Ajiqeraanaueu sorjdwr A8y
‘§3[1I PIJUSLIO-UONEITUTILIIOD PUE
_gewny JO 9sn dy} pue IOTARYSq oloxd
Jo sa[nl JUAPLNS-Ng-JY3I Jo osn Iy
g1 juewrdo[PAdp IEMIFOS 118y 0} 10D
-spuesard ayy pentunad pey sanpayos
oy} J1 10 31 JNOqe Umowy pey Aay3 1 Bur
190Ul JeY) Je U9 aA.Y p[nod oym ardoad
130 Aueu Furpuy a1e pue areys om jey)
gordmourxd o) Fune[nuLIOy [[1IS dIe 9AA
‘(v xipuaddy)
0159JTURIA JuowdoPAa(] AIeMIJOS a3y
a1y} 210IM pue juajul .Ino aqLIdsap 0] 1SV
piom 243 pa3oo[es A\ TUOWUIOD Ul s@uny
JO Toquunu Gurstidins e pey am punoj om
'gaT)LIR IS pue Sa0UIJIP INO SSNISIP 0]
100z Arenigad ur Jow sn Jo dnoid e uayAq

14!

Juaurdoaaap E.mﬁxow.\mmmm

uLIejseu 03 910D SI , SUOHRIIUNWWOD JO ssausja[duwoour a 3urdeuepy,
'dUSIPNE PIpULRUL 3} JO 8sodind 9y3 03 JUSDIYNS ST JUSWNDOP A} UM
dos noA ‘suokieas 03 Jqisusysidwod ppow u3Isop ayj IO JuaWnoop
sjuaurambar 9y} axyewr 03 A1y wey; Tayjey] "uonedrunuwuIod jo ssauajard
-WIOdUT a3 a3euewr 03 urea] nok ‘Peajsu] ‘uonodayrad jeyy yoear o3 Suidn

JO NOA S3ASTox a[qrssodwr are SUOT}LOTUNUIIOD
ONTTE IAITOMMADTA it frmaea vanm —— 4

109510d je Surmoury

[|

NOILLVIOINONNINOD 4O SSUNHLA TdINOOINI HH.L IONILLdHIIV

.Fﬁmﬁm& spdures e SI (SUIWOd}.10§
amaypoD) 4va]D [pishi) uonenyis
JUSISJJIP © IOJ PauSISap Sem jey) auo
Suisn uey} 9ANRDI9JJO 2I0W SI pue 3uo
mau e Sunead uey} IoIses st A30[0po
ApPw 3unsixa ue JUIAJIPOIN uonen
-}IS IRTIWIIS © UT A[[NJSS900NS Pasn uaaq
Apeaife sey jeyj auo puy 03 Juem [[Im

lo[rey 03 A3ojopoyawt aseq e 3uroares

SL ISASOYM\ sardojopoyjowr ofide

's38s9201d uo Zursnooy
ey} A[ISe dI0W PUe AT 2I0W 9]
0 paloxd a3 smofe Ajrunuruod pue
ogeINUIWOod ‘S[[IYS U0 JUISNOO4 e

"S9130[0PpOYIa 10 Sassa00.1d
JURIajIp posu spaloxd juarayyi(y .

:SeapI
310D OM} 9SaU} UO SILIAS A} Iseq M

dAA100dd ‘A TdINIS DIAIDAIS :SAIDOTOAOH.LAN

THINKING INEXACT THOUGHTS

We don’t notice what is in front of us,
and we don’t have adequate names for
what we do notice. But it gets worse:
When we go to communicate, we don’t
even know exactly what it 1S we mean to
communicate. '

Pelle Ehn describes software design simi-

larly. Recognizing that neither the users

nor the designers could adequately iden-

tify, parse, and name their experiences, he

asked them to design by doing. In the article

reproduced in Appendix B he writes:

“The language-games played in
design-by-doing can be viewed both
from the point of view of the users
and of the designers. This kind of
design becomes a language-game in
which the users learn about possibili-
ties and constraints of new computer
tools that may become part of their
ordinary language-games. The
designers become the teachers that
teach the users how to participate in
this particular language-game of
design. However, to set up these
kinds of language-games, the design-
ers have to learn from the users.

“However, paradoxical as it
sounds, users and designers do not
have to understand each other fully
in playing language-games of
design-by-doing together. Participa-
tion in a language-game of design
and the use of design artifacts can

- make constructive but different sense

to users and designers.”

15

91

| K3119n Suraordun
Jo $3PAd Burpus-1osou ur a0 pue
T9A0 oeqpasy oy Suimataar pue Sumoe
‘swe3-adenSuey ayy Leid o) st paxmbar
St3eYM "paxmbaz jou osye st 31 3nq ***ayqrs
-sod jou st uogedIUNWWoD s3e[dwod jey;
PapuIWal 3q 03 pOO3 SI 1 ‘SIasn INO puejs
-Iapun 0} pley 0S YIOM aM UaUyM awmn
B]y "90BJI9jUI I9sn pooS e jonnsuod Sur
-puejsIispun jeyj Wolj pue siasn jo sjiqey
MIOM 39U} puejsiopun 03 A13 [[1IS SIDUSISap
duanradxs 19sn pue siayderSouiss
usym ‘Aepoj urede JUeAa[al si ySsut SIf

‘(91% 93ed

998) ,SIoudisop pue SIosn 0} ISuds
JUSISIp NG SALDNISUOD e Ued
spejiae udsap jo Isn) pue ugisap
jo owed-af8endue] e Ul uonednnred
atopefo; Burop-Ag-usisap Jo sowres

28enBuey Suiderd ur A[ny IBYI0 yoea
pUeISIapUN 0} JABY JOU Op SISUSISIP
pue s19sn ‘spunos J1 se feorxopered =,

:ATESS309U JOU ST Uoh
~EDTUNUIIOD 939[dwod Jey} 9j0IM 3y ‘(auwr
Surpnpur) apdoad jsowr ursuding 'sg/61
2y} Ul sIdsn SAreu-1ondwod JIPY} YIIm
Supeorunurwod pey sewwerdoird sy
pue ay A[noygJrp ayj saqrdsap uyd ded
xrpuadde ayy ur spiIe puodas ayj ujg

S (R o -

‘y8noua uayjo Y3noua
asop 128 03 poou jsn[Ip4 uOPEDIU
-nunod 3ajad pasu 3,uop am jey) st £19)
-sAw 3} 0} JoMSUR 9] "UOHLIIUNLIIOD

oo popad 198 jued om je ST ArejsAwr ayf

IMOY¥YYOWO] O0Qg | 0 LVYHAM ‘OS

UOHEDTUNUWIUWIOD PUE UOIIUSAUIL JO aured saneradooos
e SE J1 I9PISU0D 03 SI juawdo[aAap aIeMIJOS JNOge ULy} O} AeMm [NJIINL v

UOLJVIIUNLUULUOD) PUV UOLJUIQUT
jo awuvsy an13viodooH

(Se61)
AN IBAIS ON,, JpPnIe Yy joIm A
ey Juawudisse paey A[paxyoim e yons se
11 MES $¥00Ig patg pue ‘(gegl) ,ileoua[)
10 Temparuy eyse], asemyog, ur i
noqe 2)0im sanBeafjod pue sse[oy 11aqoy
‘g xipuaddy ur Kjamus resu ur sapae
OM] 35O} apnput | jey [jam os sny pIp
UUH pue aneN (gge[) sioufipay awanifos
Jo uisacy PaIuaLIQ-yiop Nooq jurrd-jo-jno
Nq JuadgiBew suy wr pue (gesl) LIS
Pue wonedouregy up MBS UeiART
“IPUEIS,, ul‘pip uyy afja pue ,'Surppng

Atoayp se BurunuerSos, apnIe g8pl

sy ul ‘PIP INEN 1233 “210)

. m.mn
o o rdosd o

mo JO SIMEIN 2 38 oeq upyaor

: -

ay) 01 pue sanBeaf(od =y o mmum: MMM@;”
o UOREJIUNUIWIOS 33 Pue seapr s sidoad
jnq Sures Sy ui Bunpou sy I, “noyuory
_pidioD puY Hotuaaur fo sl mbzfm.,momu
g 210jo13) SI Juawdopaasp aremyjog

HAI0M 1133 JO syxed yisinax

Loy uaym ‘saajaswaiy) “ureSe SIayIeur

asoy asn A3y pue ‘Surpueismpun

nayy pue ssaxBoid meyy isay pue

I0JIUOUT O] SISXIPWl Isje[2UI0D [Im
oYM 9SO} 10J SIDILW JO S[IB1] aALa] «

uoyn[os

B JONIISU0D 10 wajqord ayy pugjsiapun

wey) dpy y8nu jei seapt mau aje1d

-uag 01 10 SaA[@SWIAY] JO INO SHY3NOY)
md o3 saowmep pue sdoxd asp .

Aawy “uonenyis SNy YSNoIy 40Mm oL

sayeysnua Jo SurarSiogun st jeyy waysAs
e 0] ‘uowssardxe jo saanjed) Awew
syoUp yorym ‘a8endue] I[qEINIIXD
ue ur Pnysuod [eyusw jeyy ssaxdXd .
aoeds
A3ojouyoay apqera e ul wapgoid 3y
SSAOS ey} WSTIEYDaW Awos auidew]
aoeds wajqoad ay puesiapuil ©

d h.ue—u gp sadueyd

0] paau Lay | ‘pasdol
¥ L P "GOO

e pue gyy8noy pue ‘SAYSIM
Ul SaAT] ey auo ‘pupisdpun Ay H“M
£33 yerp wiapqoxd e uo SuUT{IOM s

sy o1 sxadoppaap oyt Sumey 50 2l

dured ayy ur saao

UM iJo 1stsucn j
] 1 suned a
V8 201349000 ._.Euu,__.:.r__hm me_ﬂuu.“.H._a

Teod ayy yoeas £
MOy spage i Isnedag E“: 81 M_,,ummwﬂ

S ‘3ured oy Supn
aesadood hm: = 1IP SIESMIIoS pue
W [PM Moy st ureay e se iy
-enb 1oy 3o amseaw AL ‘eod 3y yavas
9 130 pes dpy wesy ay uo adoad
I} ssnesaq aagesadoo st awed ayy
‘dnosd
gy puegsip o) Ajqissod 10 ‘waysis Ry
Apmua ue pmq 03 ‘wasds ay avedar o
wsAs awy anoidun o3 aq Aewr aureS jxau
2y [, ‘awed mau e saugap Surpuny mau pue
‘paaAEp st wajsAs Ay} awn A punore
sadueyn Aqpensn juswrdopaap 105 Sutpumy
“Iaje] J1q B SAUI0D pua ay) sawmawos quiod
UOHBUTIL] Ay) Sytew wasds a jo L2
-ASD SAUPAWOS “PAYOUAI 5 (208 Al Uy
19A0 S 11 asnedaq iy st ured Ay
Uon
-oxd Ayiqer] 10 ‘wopaaly PJIP 4500 “ast
jO @sea uo sndoj o} 1ajaud Lﬁﬁ: day ng
‘ajgissod se Appomb se waysAs g anpoid
: ‘5956 JSour U] "W
0] Wie siquiad ureaj d
oL e pue Fuppon ¢ fupnposd 1
(08) I JaE0) SYoM SRS T
raro16a) ‘SIAUSISAp ‘SISYEads WEOD s
ig aesn Jadeuewt A4 nosuods a3 Jo
T4 o Awreal L -anypaaoo PUe
g)518U00 (VRIG] —— sgued dnod e st
caynuyf Eupypas (800 = i am
ayl e ?amm. aremyjos 10 u=as ALY
s NOILYIINNHHOD

anvy NOILNIAN| 4O IWVEO ¥

Fannd v _._mu.n_m.._U._ LA

SOME PHILOSOPHY ON BACKSTAGE

NAUR

From Peter Naur’s writing, we get the
idea that the team is working to create a
common theory for their work. In terms
of the Swamp Game (p. 49), the team
starts off not knowing what they are sup-
posed to build, where in the swamp to
build it, or what the layout of the swamp
is. The theory they are building is the
answer to those three questions.

Part of the communication aspect of the
cooperative game is establishing a shared
direction for the team and a shared view
of what the results need to look like. This
is called common vision in some writings.
Naur’s theory includes this idea and also
a common understanding of why the
thing is put together the way it is.

EHN

Common vision and common under-
standing of why the thing is put together
the way it is are both part of any coopera-
tive game, and most certainly our cooper-
ative games of invention and
communication.

Naur’s discussion of theory building as
a personal activity helps us to understand
modes of transmitting understanding
from one person to another. There is noth-
ing that says that written documentation
is the best way to convey understanding;
possibly it is the worst. If we take the
challenge to “convey understanding,”
then we can experiment with different
ways until we find some that work better.

From Pelle Ehn’s writing, we get the idea
that the understanding of the task to be
done may never be perfect, but it may
never need to be perfect. The magic lies in
the back-and-forth between developer
and user, creating new understanding
about the task at hand and the tools being
Created.,

Itis easy to look at Ehn's team’s assign-
ment from 1986 and think that we are
long past the days when people couldn’t

understand how the computer could help
them. However, every organization work-
ing on improving their organizational
process is faced with this problem. Until
the system gets delivered and put into
use, there is really no way that the users
can tell how the presence of the new sys-
tem will change the ways they work with
each other, and the ways they carry out
their jobs.

18

P

el ;
Ehﬁ.thtgensteln'ﬂ Language Gamas * 407

g EHN, WITTGENS ’
PELLE - TEIN'S LANGUAGE GAMES

g wﬂrk,gm:ted Development of Software
tificts (Ehn 1988), Pelle Ehn describes a
oS of ijects that explored ways of
naking software more appropriate to its
qse, easier to use, and made by both
mers and end users.
Pm’[‘h ! high point of the book for me is the
way in which he considers software
Jevelopment in the context of four philos-
ath Descartes, Marx, Heidegger, and
Wittgenstein.

A person working in the style of Des-
grtes thinks of an external reality worth
describing and turns her efforts toward
apturing that reality. She is therefore
‘nterested in the match to reality of the
rquirements, models, and code. This
Carfesian approach filled our field’s first
halfcentury.

henefit? How dloes its deployment change

[? 15 ?ﬂl}?_ the style of Wittgenstein that
OPposes the style of Descartes. A person
working in this style views the unfolding
of the software design as the unfolding of
alanguage game, in which new words are
added to the language over time.

This immediately links to software
Flevelnpmﬂnt as a cooperative game of
invention and communication. [proba-
bly owe a good deal of my construction of
the cooperative game model to Ehn's
writings. I had read and forgotten the fol-
lowing article years before working out
the cooperative game idea. As | started to
write this book, I reviewed this article and
was shocked to see how many of my
words echoed Ehn's. :

Ehn is concerned with the building of
shared experience through shared prac-
tice, of using practice directly as a basis
for discovering needs. In other words, he
is working with tacit knowledge. More
than that, he highlights the place of skill in
read Musashi’s words pointing out much
the same). Although skill is a topic [have

st} “19ASMOF] 'SIDYIO YHME
Surpurjsiopun ue aIeys 0} O
areys O, "SI9YJ0 YILM UOHEISCC
-oxd st 1 ‘AJIAT}OR [BIO0S B OS[e S
Mg "UORISAI pue uonde Yjoq Sk
PHIOM SIY} moqe a3pamouy Ino p
$199(qO JO PHOM 3Y} Y3Oq ‘PIOM 3} 33
-o1d am “eonoerd y3nomyy, ‘suoneas :
-palqns sapedaid 31 *971] Jo WO} UrewIMY 2
st 3] ‘Ayanoe eonoerd AepAioAa o st
-oe1d “3104s uj ‘Ajipear Jo Axoayy mhzﬁmm
3unerdar 105 syeprpues 3uons e st A1
JO UORIMLSUOD [e0s 3y se somoery

Auppay sj sopoosy

S ey

- -

-Wod I0j [eIpr uSisap e se |
1pen 251 PUe puviapun 0y po ot
uaym pue sauvs UuoyvzIuvSio Y4om pun sdn
-Yo0UL S YONS SUONALIISAP pup spoya Suop
-hq-U815ap 95N 0] PajvIs am uaym ‘srouSisap
wory sIom sowyderd pue syiom
sorydead woxy sroudisop “1oy3o yoes woy
Sururea 03 awyg 210w A[qRILpPISU0D Pajed
-IPap oM UayMm SI3Sn JIYJ0 M SUOISSTD
-SIp pey pue SIOpUsA pue ‘SMOYs Ipel
‘sjued Qunsaroyur 03 sysIa Juiol apew
M uAYM Jured sjusuaAoIdw] nfssaoans
Rida jou aiam smoraiaqul woif HOHY uLlojit
Uo pasvq suoydiiosap SwISAs pur %&Eﬂ
-19ads Juamanbay "papIIINS Emﬁﬁc E.Hﬁ
ps[ey spoyjowr ugisap AWOS Emw m__a
ryderd oy ‘uBrsap 241 §O mummzmwmizﬁ
Jm Sunyiopy -suondurnss® EMM yaloxd
Aw punurexs-or 0} W m..ww n_w“m mQ
VidOln =y ym SIS .suondHosaP

i |

suondudsaq swaisks Supjuiyiay

‘uogoe se adenSue| spremo;
uonduosap se of8endue] woy ulisep
Ul PYIys Syl UO SI SNdOJ AT ‘UIdISua8iipm
Simpn jo Aydosopyd a8enSuey Lreurpio

Against this background, we can
understand the design of computer
applications as a concerned social- and
historical-conditioned activity in which
tools and their use are envisioned. This is
an activity and form of knowledge that is
both planned and creative.

Once struck by the “naive” Cartesian
presumptions of a picture theory, what
can be gained in design by shifting focus
from the correctness of descriptions to
intervention into practice? What does it
imply to take the position that what a pic-
ture describes is determined by its use?
Most importantly, it sensitizes us to the cru-
cial role of skill and participation in design,
and to the opportunity in practical design
to transcend some of the limits of formal-
ization through the use of more action-

oriented design artifacts.

g
L#&ﬂﬁhﬂgnﬂge as Action

e = ¥ %ok t..uun__ux,\:.

To master the professional language of
chairmaking means to be able to act in an
effective way together with other people
who know chairmaking. To “know” does
not mean explicitly knowing the rules
you have learned, but rather recognizing
when something is done in a correct or
incorrect way. To have a concept is to
have learned to follow rules as part of a
given practice. Speech acts are, as a un‘ity
of language and action, part of practice.
They are not descriptions but below I will

L= e = e R

21

‘ssanoxd uSisap oy ur Lerd Aay3 9101 uﬂsﬁ
‘g jey; ‘wdYy) 9sn am MOY ST Gaﬁmmﬂw
e oy ypeoxdde UeIuRSUS3PIM © KmH
‘spoejrIe USISIp I suonpdrmsap mEEm _M
38T 1191} PUE SWI)SAs aIminy pue wﬂmﬂmﬂx
aquDsap A9y} A[I09L103 MOy UO 10 mMmmﬂ
31} JO PUTU 9} UT SaISop 94} JoLImu Aayl
[[eM Moy uo ‘udrsep ul suonjdrosop sura}
_sAs JO ,,SS9UIDALIOD,, Y} UO JOU SI SNOO3
oy ‘yoeoxdde URTUIOISUBNIM B U]
(861
‘MOPINOX ‘€861 “UOSHDE[) suonpdrosop
woisks 10 suopeogpads JuowRImMbal
jo sueawr Aq uoneponPE SHy yroddns
01 spoyw uo st siseydure Oy} ‘@dusy
spuewEp JEY} Jo suonduosep joIdxe
pue a3[dwod 2a18 03 9[qe 9q SN SIasn
o3 10yl oq 03 swess soypreordde uSisap
jsowl purgaq uopduwnsse uouwuod
i A1oAn109330 ayexado
03 28uryd pue Aejdigjul SIy} I0j suonIp
-u0d a3 axe JeYAA sn s,uonjedrdde ag jo
asoiy repnonaed ur ‘ssuwred-adendue] 1oy3o
I0J S9[nI a3 23ueryd u3Isap Jo sowed
-a8en3ue| 2y ‘@ouap] "way) asn ajdoad
Aem a3 pue swajsds poaseq-rondurod
AreoidAy ased ano ur ‘@onoerd Sunwuiojaa
UL PIaA[OAUL 212 am Soudisep sy
s1op)134y udisag pup adpajmouy

pupjSIdPUN UYD JUDE 1) 1y S4aYjo MWMMMMM%

1 Jo0 0]]qY 24 0] suvay dNIovAd 13

. sapma ay;
mojjof of uoneradood pue uonoeRuI S
Butheq “sajn4 po1jdxa orf1oads oy uvyg oS
v 0] Juvi0dil 240U S1 Siayjo ypm AaY1a80;

fivid oy a1gp Suaq fo ioiamyag Suimoof
=914 a1 T, J11dX0 sAeme woiy xey jng paye
-3I AJ[eID0S SI€ JeY) Sa[NI ‘S MO[[0J 0}
UTe3] 03 9ARY aM ‘sowred asayyy Aefd o3 ayqe
9(O, "SaNIAL}OR [RIDOS due “UaIp[iyo se Aerd
oM sawed oy oI ‘sowreS-aSenSue]

.JG:fD.iilll " (8 T

Ur am Moy Juissnosip uj ‘sowreS-08eng
-uey ut ajedonaed o3 st aden3uef asn o,
sawpn-aspn3upy

The rejection of an emphasis on the
“correctness” of descriptions 1'- t‘spm‘.mll}j
important. In this, we are advised by the
author of perhaps the strongest argu-
ments for a picture theory and the Carte-
sian approach to dﬂsign—thf: }TL.I“S
Wittgenstein in Tractatus Luglcc?-l hf_lu-
sophicus (1923). The reason for this rejec-
tion is the fundamental role of practical
knowledge and creative rule following in
language-games.

Nevertheless, we know that systems
descriptions are useful in the language-
game of design. The new orientation sug-
gested in a Wittgensteinian approach is
that we see such descriptions as a special
kind of artifact that we use as “typical
examples” or “paradigm cases.” They are
not models in the sense of Cartesian mirror
images of reality (Nordenstam, 1984). In1 the
language-game of design, we use these tools as
reminders for our reflection on future com-
puter applications and their use. By using
such design artifacts, we bring earlier experi-

ences to mind, and they bend our way of

thinking of the past and the future. 1 think
that this is why we should understand
them as representations (Kaasboll, forth-
coming). And this is how they inform our
practice. If they are good design artifacts,
they will support good moves within a specific
design language-game.

_ The meaning of a design artifact is its use
in a design language-game, not how it “miy-
?"B?'S mﬂiﬂy” Its ﬂblhh{ to sumnnrt ciicl siaa

23

ve

PR30} Sutop-Ag-udisap jo sowred-adens

el Buiderd ur Aqny J1oyjo yoea pueys
-I9pun 03 dALY JOU OP SISUSISAP pue sIasn
Spunos 31 se [eoxopered ‘1PAIMOH

sy} WOX Yj0q pamalA aq ued 3urop-Aq
ugsop wr pakerd sowred-adenduey oy,
‘soure3-a8en3uey 1o} padpLq
Srasn pue SIBUSISAP UDIYM YSnoiy; [003
uBIsap JO puD| B Se PIAIdS “I0j PausIsop
3uaq sau0 Ayl 0} IRIUIS SAUO AJ[eIadso
‘saderdyI0Mm 03 SHISIA JUTOl USAH "SajepIpued
pooS are—sorreuans pue ‘sdnpour ‘SurdAy
-0jord—spoygowr Furop-Aq-udisep Ps[[ed
walord y1go 10 aus ur 9m jeym Jeyl Uyl
[;sowre3-a8enuey usamiaq Ae[diojul Sy
Hoddns prnoo s7003 USIsap Jo puP{ FEYM
‘soure@-afenguer omi ayj Usamiaq

ur jses] je ‘pmoys 3 ‘sewe3-o8end
-ue[JUSIRMIp oY) usamiaq ded ayj awod
-I12A0 03 3[qIssod aq p[noys i1 ‘of1[JO WLIO]
JuIes 9} SIBYS SI9SN pue SIdUSISIP J]
Jsassadord Sururresy asayj 2383
-1[oey 03 udisap ur dofeAsp am ued SueIw
reym puy ¢(uSisop jo oweS-a3enduel
oy ur syuedonred se Ljenb 03 uresy 03
9ABY SIISN Op JRUAA (S9SN 9Yj JO soured
_3enue| oy ur sjuedonied se Ajjenb
0} Op 0} dARY SISUIISIP Sk aM Op JEYM
. 2upD 3yl
Jo sajny,, maN :8ujoq Aq udisag

M..a,w.wwu 10 swe3-a8en3uey 2y ur uodn
“=SH3I Isyumyg aq p[noo aduaLadxa Sy

5w 4
o T

-n.-.v.ﬂﬁ 10 ad£jo301d e jo asn eonoerd
"+ 4Snony peousuadxe aq pmod Ayl

¢c

Aem Iayjoue paugisap SI JL uaym
you nq ‘o8ed paoueeq poos e 398 ued oy
fem 2uo paudIsap SI WRISAS 9y} uaym jeyj
pey a3 ssexdxa ‘dnspowr ayj je Supjrom
S[M ‘PINod Y “Kjureriuuey Aq 93paymouy
snonsuas sy ‘Surpueisiepun [eonoerd
sty ssaidxa 03 wiry 10y o[qrssod sniy sem
11 31 pres 3y se 31 3utop Afrenjoe Aq ,2anjord
e Juiddon, Aq jueswr a8y eyM moys
ose pnod sy—dnayew a3ed ur jueirodun
SurgpPwos—preards aGed [& MOYS 0} 103
%E >4 PINOYs uaa.s ayy ey 103 dnspow
W e Supjzom yderBodL; ayy ‘oid

“WeXa 105 ‘prnop Afuo jopN ‘Surpueysiapun
S

few SuIp pun [enjnut ‘uSIsap poos
pue SurpuelsIEpun 1P33q 10 Ayamde
pareys ® ing yredonied Aue 03 Ajanoe
Jsuasuou e jou St u3isap jo auwred-s3ens
-uef 2y} se Suo[Sy SN 0} SE ISUdS ures

) ayew jou prp awed ay3 jey} Aes yySnu
auQ) “SunpiAue woy pardod sem 31 jey] Su
-MOWy INoYIm 31 Aerd 03 pue ‘SIaY30 woy
swred Sy} wIea] 0} surer} ypm pajurenb
-JBUN 3qLY B JO UAIP[IYD 33 10y jqissod
9] SSIPEYMAASU pmom 3| ‘suren jo 33p?
MO Ty} y3rm pajoauuod si awred 1yl
suten ye Aerd warpmp uaym,, jey; sejou
(ES61) ursualnipy “srouBisop pue ssn
0} 3suas USIsPIp Ing aARonIysuod e
e Spemyre USISsp jo asn ayj pue ugisap
jo wﬂmwéwmﬁwaﬂ e ur uonedpuied

Finding a solu-
tion that works adequately in a particular

i reframing the problem
over and over as more 15 learned about th_e
material, the problem, and the set of possi-

le solutions.
F eDonald Gchon, a professor at MIT,

refers to this constant reframing as haffing
a “reflective conversation w_lt‘h the situa-
tion.” In The Reflective Practitioner (Schén
1983), he catalogs, among others, chemi-
cal engineers tackling a new problem.,

These chemical engineering graduate stu-
dents were asked to create a manufactur-

ing process to replicate a particular patina
on china that came from the use of cow
bone, which would soon become unavail-
able. The students progressed through
three stages in their work:

« They tried using chemical theory to
work out the reactions that were hap-
pening with the bone so that they
could replicate them. They got com-
pletely bogged down using this
approach.

* Abandoning theory as too difficult,
they next experimented with pro-
cesses in whatever form they could
think up. This also got them nowhere.

* Finally, their professor coached them
not to replicate the bone process but to
Fievise a process that resulted in a sim-
ilar effect. They combined bits of the-
ory with experiments to make
mmcremental progress, getting one cat-
egory of improvement at a time and

reducing the search space for future
work.

;Fheu_- t]’lil:d sta_ge shows their reflective
nnverfsatmn w_lth the situation. As they

T

26

LT

[rowgTp Butaey pue ‘AR 1P o
wﬁ. st uey) Joyies AJAARRAIDSUOD [1E)
0y SuLuejard isuewmy Jo Sapour aimfikd
OM] Ul paloypue ST 1 asTEdAq .Jﬁuu.._.mmm
1t se Susudims se jou st sy Jeyy ande
M [‘sadajens aaneia)l pue (Ejuall
-a1in asn 0j 3snyal [[Us sladeuEw JeL) St
Sunyy Bursudims Afjeax auy ‘saxejsnu ayew
apdoad jews st 31 SNOAGO MOY URALD

sy ejsIuL JO §oe) Ay 0) Jsnipe jei
sassaoosd asn pue apew aq [[im sayesIu
jei jdaooe jsnuwr apy cadessa ou st asayy
'op Aa asp Sunjjdseaa pue - Sunsy
Buyeysuw ‘Furpeaygoord Suidhy uSisap
'sjuawannbar ‘vopewRsa UL sayeisiu
ayew adoa] awn sy Ay ySu sy
128 Afenioe oym ardoad puy o) Ayun
81 auo Inq ‘awy 381y auy B sBunyy 108
0y asnuoid oym ajdoad puy ue aug
“aloxd ayy wo mau 3unyfue
ey o) 10 sayeispu dolew Aue ayew
01 jou weay juswdopaap A sjoadxa ay
1ei Burles spaafeusw gy sprom Y0

L

WL sy 3y Bu g1 0
astuoid [oym auoawos aimy wso“

ATIALLDMALSNOD SHMV.LSIIA ONI'TANVH - AINO AVM TVIATIL V NI SWHLSAS ..dII9AH

. uau
~upw Apy © ut pamredar pue hﬂﬁmﬁ#ﬁwﬁh
PARACOSTD 3q O] SIEIsI A[QEIASUL
saidoad 103 mope 03 ST satdajens aane
-33)1 pUE [EUBUIADUT 0] Uoseal Aaagg
_ (8661 WINGYP0D)
sppalord wapowr 10y 10198 §5a00NS [EILD
e s juswdopaasp [euBwanY] Janpoid
oy Suraordun dojs 0y uaym Surppap
s A3 se jou st spafordqns oyur alord
a Sumno asnedag ‘urea) 0} spoyiaul
oM a jo gapduns ayy St [ejUITRII]
‘S3a[qE
-IDAIRP Ay Jo ‘sanbruypay sy ‘ainjonns
wea) ayy aSueyd St sy ‘pasoxdur

39 PIROYS 1eYM JNO Uy 0] SUOHUIAUOD.

dunjiom mayy aunwexa sIAqAW WIEA)
9 JNng st waysds ayy Jo uondes e 1Py
"paudisap Buraq waysAs ay Jnoqe se [[aM Se
ssadoud Juawdoppasp usmo sir Jnoqe Wea|
HIEs) 3y sj91 wawdopaap [ejuswamU]

. AP
M Aoy se pajesSann vﬁmoﬂ.ﬁn
0 S8 wamamp qe padopasp ate WA
“sh5 9y o savaid PMm w A3ajens Sudels
pue m;msﬂmﬁm B 0} sIajan ojuan@iau]

£ 0w sopun LemySiy e pmg ¢
3y ‘apdwexa ouo snl sy

3q M (80 M 41 g mory 10) aye
-18ua aours yeqy sunp Afusyesin ﬁmﬁﬁﬂmﬁ

w ONLLVHYL

8¢

7 Aﬂum_ﬁﬂ& 03 sarpdde awes
oy ‘sardajens awed-pua pue ‘awed-puy
Suruado juRIAIIP S yIm ‘ssayd st 480
peue ug) awesd auIes al} Ul SJUSWOW ua
~I2JJIp 1€ J0J P3[[ED Ak S9139)R1)S JUaiagIp
Jey) pue sa1alells JUAIAIp 107 [[8d suony
-eNJIS JUSISIP JBY) SN PUTUAI 0} S9AIIS
[Ppow swes aaneiadood ayj | seonoerd
pue sassadord ‘sar3ajenys oymads Afpe
-uonenyis yanoay) Ajqera: pue ssausan
-Daye aaoxdunt apg, (S1oopurd/ /:dpy
9as) aouapuadapiajul jo uonerepaq diys
~1apeay jaaload a ur papooua st qurod Ay

211y
At o 1jv poo8 st g1 uvaw 3, ussop auny
40 ypnwt poos s1 ASayways v asnwoaq isnf

st .\w..—rdﬂ_ __n—.h._m?__.,.,.ﬂ.mu. 0] ysim [Bapr Iy 502
ME Ay weym sapdere jsowr St uOHED
o S50 Edaq ﬁ.ﬂ.__ __._,._____ 74__1”:_ _.4_.._;1_.:uu s
shompn o aidoad juem | spunyy ajdoad AueN

‘SJUATR) 119U SN WAL
19 pue ‘syjduans saidoad uo meip
Jey) SWSTURDaUW JO asn 3] aseanu]
‘sassawn{eam s ardoad uo Afar
IR} SWISTURLOAUL J0J PIIU 2] 20NPIY »
"JUIES AY] Op
s 2130 oA ut dnoid 1281e] e Jr aag
‘suondniIur axe) 1,uop noA yoim ur
‘Buoy sanoy omj 3snl ‘Aep yoes pouad
[[ews e ajearn) ‘suondnriul aonpay .
woy Adod 03 auokrans 1oy auruo
so[dures yIom jo UONIS[IOD [[ews a1
ind pue ‘Siyj op 03 SII0 Maj © ISI[UY
"DRJISIUT I3SN
10 ‘owaw uBsap ‘sonunu Sungaaw
‘aerd josloxd ‘aseo asn quaunuod SSE[D
URPLIM-[[2M B ‘9p0d pooS awos jo ad
-urexa ue :safdures yI1om maj e 199[[07) »

HUAIIOLAUS 1noA saoadury

:SNOLLVN.LIS INTIALAIA
M0 AVA INTYALAIA V NI L0d
- SYHOM LVHM LVHL J40 TIOIN TIVIA

WIS JHSIUL 200 UIYM. 254900

—ysid a4t apq :s1eFeurew 1aloxd o3 Jueasyer
padse ayy dn swns mLew|e-1pnReL]

‘pajels s

warqold ay) moy uo Surpuadap sawiodino

9] Ul SDUIISFFIP Y} ST SUTISAISIUT ST JBYAA

qenba are sawoomo [[e ‘A[jeoreuwLyIeN

(gS d luuEwEd-fjsheld)
.C._Q_r_mu_. .r._..__D.._._.

USNEL 007E Buimey »su o1 sajaud sjdosy
LwaL
WO ABME UEl Q07§ Surey JOo SDuBLp
0G/0S E 1o Wweyl woy Aeve Uayel 00l$
HUiARY Usamiag 9500LD O] aAEY Uayl pue

006 usnE aue ajdoad ‘pucoas syl U
001%

paajuesend ou) exey o) Jajsud sjdosy
e BB
0TS 1 ®oUBLD OG/05 B 40 3uoW 001%
pasiuemEns © Usamiag [s00yd ©] Bsey
ualyy pur Opeg uaaE aue gjdoad say 2yl
U| JuUluLRdXe [ENp B S8l ULIBLWE-| 2Rl
IDIOHD) 40 SNOIET)

‘SYSITA 404d LON

‘SHONVHD dOA AdIDAd AM

COMMUNICATE & RADIATE "OSMOTIC'":

2 The wording in the Posters Mmatters,
One XP team had posted “Things we diq
wrong last increment.” Another had
posted “Things to work on this incre.
ment.” Imagine the difference in the
projects: The first one radiated guilt into
the project room and was, not surpris-
ingly, not referred to very much by the
project team. The second one radiates
promise. The people on the second team
referred to their poster quite frequent]

29

m.l.; r:;}gr Cimers give mixed reviews to
outside-of-work team-building exercises,
Several said, roughly, “I'm not interested in
whether we can barbeque together or
climb walls together. I'm interested in
whether we can produce software

What does build teams? Luke Hohmann
offered this observation in an e-mail note:

“The best way to build a team is by
having them be successful in pro-
dﬂﬂlrgmsults. Small ones, big ones.

% It doesn't matter. This belief has
empirical support; see, tor instam:e,
Brown (1990). Fuzzy team building
is (IMO) almost always a waste of
time and money.”

Support for this is also found in Weick’s
description of the importance of “small
wins” (Weick 2001) as well as in inter-
views of successful project managers.

One successful project manager told of
a key moment when the project morale
and “team”-ness improved. We found the
following elements in the story:

* The people, who sat in different loca-
tions, met each other face to face.

* Together, they accomplished some sig-
nificant result that they could not have
achieved without working together.

* At some point, they placed them-
selves in some social jeopardy (ven-
turing new thoughts, or admitting
ignorance) and received support from
the group when they might have been

- attacked.

—— "

Meeting

g D

Programming

oo o8 |

|

-HEN:

|

|

. Pl"f"(ﬂf’el

oo Og

|

Customer

Office 2

e e e ——

J

Server/ Office
Equipment

Ao
[

7 Figure 3.1-1 Completed office layout (Courtesy
~ of Ken Auer, RoleModel Software).

SOCIAL CONSTRUCTED METHODOLOGY:

P

«Methodology 1s a social construction”
Ralph Hodgson told me in 1993. Two
years went by before I started to
understand.

Your “methodology” is everything you
regularly do to get your software out. It
includes who you hire, what you hire
them for, how they work together, what
they produce, and how they share. It is
the combined job descriptions, proce-
dures, and conventions of everyone on
your team. It is the product of your partic-
ular ecosystem and is therefore a unique

construction of your organization.
Boil and condense the subject of meth-

odology long enough and you get this
one-sentence summary: “A methodology
is the conventions that your group agrees

=S

32

39

SOLIO}S QY3 SJIIM SISWOISND S, "UOReIN!
suo unpm podopAsp aq ued jely
Ayeuonouny S[qISIA-19sn ‘K1038 1981, OV}
st Suuezed sjuswarmbal jo jrun YL
‘SUOTIRIS)L 9ATJ O OM]
Arans aq Aewr yomym ‘poriad ases[ar yoes
JO pUS 3y} B SIASN pua S} 03 JNO PI[[OX
ST WI9)SAS pariduod oy, ‘S19Wo0)snd ay3 03
asn JOIIP JO SI JBY) 9P0d Pajsa) “Guruunt
Ul Sj[nsal uorjesajl yoey ‘suoijpdajl 10 ‘spo
-1rad eam-oa1yy ur juawdoPadp o
‘srpuneI30Id se suoneIsYIoM Aueur
Se J[ey ‘9210 B Ul pIemIno Sume] SIojuow
‘paI2iSND SUONIRISHIOM O] M A[qerd
Jo1d ‘su1001 Judde(pe 10 WOOI IUO U SYIOM
suoAraay aspradxa Buro8uo spraoid
03 9315 U0 3¢ 0} SIDWOISND [RIDAIS IO U0 10]
odueLry ‘swuarerdord (] 03 ¢ A[uo asn)
;e 10 auoyd
S} I9AO0 SUOHOTLISUT Se USALS JT 3 P[NOM JI SE

JjoLIq se ‘Areuaruuns e St SULMOJ[O4 “(<uodGuy
~wergordounxe / /:duy> dX ‘1007 Soups
‘0007 >P24) 18P0 UL ST X JO MIIASI JaLIq oy]

TIIHSLNN V NI d¥X

-j0ds j199Ms s31 apIsino pardde
UayM pajsnlpe aq 03 Spaau (SIa30 [[e 1)
i1 Anpiqearidde jo eare syr unpm ysiy
AI9A $9I00S JX e} ST AIO)S JI0Ys Y]
‘adoosornrur A3o1opoyiew a3 Lpun
1 nd 03 Arenqesoa y3nous aaey Apeuy
am ‘qurod sy 3y ‘surwaexs 03 ASofopoyzew
[dures [nyropuOMm B soxeur J1 ‘SN “[eISIoA
-0[Uoo pue ‘pajuswunoop [[em ‘9AnRdaYe
SL 1 ‘Ajreuonippy ‘[pm Ao y0oq SI
Ul seapr aiy sajensnyy jey; ASojopoyjewt
18y ue SI (dX) Suruweilolr] swWonXy

SSV19H ¥3IANN dX

“HAT'T 'TVHYA 40 LNO H'IdINVXH NV - STHOM SIHL TTV MOH

Ly I Sl L b

o index cards-
ers nego-
the next

for the iteration onto simpl

The customer(s) and programit

tiate what will get done I

jteration in the following Way:

« The programmers estimate the time t0
complete each card. |

. The customers prioritize, alter, and
de-scope as needed so that the most
valuable stories are most likely to get
done in the allotted time period.

The programmers write the tasks for each
story on flipcharts on the wall or a white-
board, estimating the time they will need
for each task. Over time, the customers
and programmers can reprioritize or de-
scope the tasks or stories.
Development on a story starts with the
programmers discussing the story with
the expert customer. Because this discus-
sion is guaranteed to take place, the text
written on the story card can be very
to remind everyone
is o

A

these integrations, they ensure that
entire code base passes all unit tests, he

At any time, any two Programmer ¢
ting together may change any line gf 4
in the system. In fact, they are gupp{éﬂd
fo. Anytime the two find a section of C;;d
that appears hard to understand o m,EﬂE
complex, they are to revise it, anﬁam]}i
simplifying and improving it. Atall [f_mez
they are to keep the overall design as gy,
ple as they can and the code as clear 4
they can. This constant refactoring is pos-
sible because of the extensive unit fey
suites in place. It is also possible because
the programmers rotate pair assignmens
every day or so, and so knowledge of the
changes in the code structure passes
through the group through the shifting
parinerships.

While the ers are working
the customers are doing three things: They
visit with the programmers to i
ideas, they write system acceptance tet
to be run during and at the end of thei®"
ation, and they select stories to be builtfor
ﬁ'ﬁ next iteration may be on the
project full time or not, as they decide:
| '_I-'.tie- team holds a stand-up ﬂ'leéllﬂﬁ_
every day, in which they describe ¥
they are working on, what i 'Wﬂrhﬂ:g
well for them, and what they might
help with. The meeting is held stand/®
upto ond of each i

S

34

ahead and make improvements to the sys-
tem at any time.

One person on the team is designated
the “coach” for the team. This person
reviews with the team members their use
of the key practices: use of pair program-
ming and testing, pair rotation, keeping
design simple, communicating, and so on.

WRAPPING UP:

N et

e implies being effective and manei-
feg;;c;jllrineagﬂe pgr_ocess is both light and
sufficient. The lightness is a means 0
staying maneuverable. The sufficiency 18
a matter of staying in the game. _

The question for using agile metbn'dul—
ogies is not, “Can an agile me‘thadﬂlogy
be used in this situation?” but “How can
we remain agile in this situation?”

It seems the important questimn;q;

ask are:

AGILE

I. How does this technique work?

2. Why does this technique wnrk};

3. How is this technique relateqd to
other techniques that [am prac-
ticing?

4. What are the necessary precondi-
tions and postconditions to effec.
tively apply this technique in the
combative situation? . . |

ﬁs you develop a reasonable reper-
toire of techniques that you can per-
form correctly, you will need to
XPOse yourself to as broad a range
of practitioners as possible. As you
watch others, you need to ask and
dnswer at least three questions:

; Wl‘uch other practitioners do !
fespect and admire?

2. HDW 1S what they do different
from what [4o?

3 How cap | change my practice
.{bﬂt-h' mental mode] and attempt*
40 COIrespond to it) to incorp?
Tate the differences that I thi
AT most importants ...

SevEN PROPERTIES OF HIGHLY
SuccesSFUL PROJECTS

s Frequent Delivery. Have we delivered
running, tested, and usable code at
least twice to our user community in
the last six months?

Reflective Improvement. Did we get
together at least once within the last
three months for a half hour, hour, or
half day to compare notes, reflect, dis-
cuss our group’s working habits, and
discover what speeds us up, what
slows us down, and what we might be
able to improve?

Close | Osmotic Communication. For
Crystal Clear projects: Does it take us
30 seconds or less to get our question
to the eyes or ears of the person who
might have the answer? Do we over-
hear something relevant from a con-
versation among other team members
at least every few days? For other
Crystal colors, replace those specific
times with an inquiry into how long it
takes to get a question to the right per-
son, and the frequency of serendipi-
tous discovery.

* Personal Safety. Can we tell our boss

we misestimated by more than 50 per-
cent or that we just received a tempt-
ing job offer? Can we disagree with
him or her about the schedule in a
team meeting? Can we end long
debates about each other’s designs
with friendly disagreement?

Focus. Do we all know what our top
two priority items to work on are? Are
we guaranteed at least two days in a
row and two uninterrupted hours
each day to work on them?

Easy Access to Expert Users. Does it
take less than three days, on the aver-
age, from when we come up with a
question about system usage to when
an expert user answers the question?
Can we get the answer in a few hours?
Techrnical Environment with Automated
Tests, Configuration Management, and
Frequent Integration. Can we run the
system tests to completion without
having to be physically present? Do
all our developers check their code
into the configuration management
system? Do they put in a useful note
about it as they check it in? Is the sys-
tem integrated at least twice a week?

36

TECHNIQUES A DISCRETION

~ Here is short summary of interest
| gqatﬁgmsand techniques for you to 5-.::;:1-
sider:
S wploratory 360". Pre-project safety
check. In a few days or a few weeks
~sample the project’s business value:
: llt;gj? uirements, domain model, technol-
.',Ei'_ ‘ogy plans, project plan, team makeup,
- and methodology.
_%ﬁr Victory. Small wins help a group
;' elop strength and confidence.
ange for some early in the project.
keleton is a great start.
1g Skeleton. A tiny implementa-
f the system that performs a
1d-to-end function. It need not
the final architecture, but it should
the main architectural compo-

re in stages, keeping the sys-

g as you go. This applies
he Walking Skeleton and to
il ﬁ

ng to ask anyone a
y it is large, visible to
rver, easily kept up to
rstandable at a glapcg,
periodically so that 1t 15

s : 2. Tw
Sit side-by-side but at diﬁereﬁtpxi?)];t

stati rorks
maei:?;lﬁ:nwurkmg on 'different assign-
1€ Workstations need to b

close enough that each person :
read the other’s Wworkstation 5'mea;n
?}’Hmrﬂf‘ng her head (60 cm-90 cm?o};
nzee;efi,l They help each other as
Test-Driven Development. The test, or
Exa'tu_table example, is written before
deciding how to design the code. It
serves both as a specification of what
to design and as a practice run at
using the call sequence to the func-
tion. Also called XXD (see page 275).
Blitz Planning. An index card-based
planning session in which the spon-
sor, business expert, expert user, and
developers together build the project
map and timeline. Unlike XP’s Plan-
ning Game, the cards in the Blitz Plan-
ning technique show tasks and task
dependencies.
Daily Stand-up Meeting. Everyone in
the team meets, standing, for a maxi-
mum of 10 minutes to announce what
they each are working on and where
they are getting stuck.

le Interaction Design. A one- or two-
day sticky note and index card-based
system usage modeling session, based
on the ideas in Software for Use o
stantine 1999). Described In Eation

2003).

37

AGILITY BEYOND SW-DEVELOPMENT:

THE DECLARATION OF INTERDEPENDENCE

As the manifesto grew 1n significance,
people asked

* What is the corresponding version for
non-software product development?

» What is the corresponding set of prin-
ciples and values for management?

Jim Highsmith notes that to understand
the agile manifesto for products at large
instead of just software, simply replace
the word product for the word soffware in
the manifesto, and the manifesto is still
clear and correct:

Working products over comprehen-
sive documentation;

Indeed, this is evidenced by the myriad
applications of the agile values and prin-
ciples outside of software already dis-
cussed in this book. Reread, in particular,
Mike Collins’ sidebar (p. 323) to see how
lean manufacturing already anticipated
what we wanted to say.

On the management side, a number of
people voiced an interest in exploring the
extension of the agile manifesto to project

—

management and product df.—_‘velﬂpn-m]“
outside software. We held the first Miept
ing to explore tha_nl topic at the A il
Development Cmntm‘fcncff in 2004, Thy
group met twice more, finally on Febiry-
ary 1, 2005, writing the six points of the
Declaration of Interdependence, or DOJ:

e

“We increase return on investment
by making continuous flow of value
our focus.

We deliver reliable results by
engaging customers in frequent inter-
actions and shared ownership.

We manage uncertainty through
iterations, anticipation, and adaptation.

We unleash creativity and inno-
vation by recognizing that individu-
als are the ultimate source of value and
by creating an environment where they
can make a difference.

We boost performance through
group accountability for results and
shared responsibility for team effective:
ness. |

We improve effectiveness and fEh
ability through situationally specifi

strategies, processes, and practices.”

i

38

