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How Software Development (often) works:




Hard work with Software:
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Developing (and using) IT-solutions means
merging i

=> complicated but
trivial technical systems

= with complex and not | 7 |
trivial social systems
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Treating such ""hybrid systems'' like trivial
(technical) systems only is the most common
less useful misunderstanding.

Examples for this misunderstanding:

=» The "Waterfall-Model" states, that SW can be developed
by one linear step by step process




=» The requirements for and the design of the system can be
and have to be documented and reviewed completely before
the implementation is done
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Earlier learning's:

=> "Bend'" the waterfall to a spiral (Barry W. Boehm, 1988)
and

=» try & enhance it with "iterative prototyping"
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Later learning's:

=» design & build the system incrementally: create first usable
parts / functions asap!

=» do it as simple as possible, use existing (buyable) solutions
as far as possible

=>» pre-designed flexibility is good - AGILITY is even better!



Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others to do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there 1s value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning  Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

On February 11-13, 2001, at The Lodge at Snowbird ski resort in the Wasatch mountains of Utah,
seventeen people met to talk, ski, relax, and try to find common ground and of course, to eat. What
emerged was the Agile Software Development Manifesto. Representatives from Extreme
Programming, SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and others sympathetic to the need for an alternative to
documentation driven, heavyweight software development processes convened.

Now, a bigger gathering of organizational anarchists would be hard to find, so what emerged from this
meeting was symbolic a Manifesto for Agile Software Development signed by all participants. The
only concern with the term agile came from Martin Fowler (a Brit for those who don't know him) who
allowed that most Americans didn't know how to pronounce the word 'agile'.

Alistair Cockburn's initial concerns reflected the early thoughts of many participants. "I personally
didn't expect that this particular group of agilites to ever agree on anything substantive." But his post-
meeting feelings were also shared, "Speaking for myself, I am delighted by the final phrasing [of the
Manifesto]. I was surprised that the others appeared equally delighted by the final phrasing. So we did
agree on something substantive."



Agility is the ability to change the body's position, and requires a combination of balance, coordination, speed,
reflexes, and strength. (From: http://en.wikipedia.org/wiki/Agility)

Material to exercise the balance agility for children

Business agility is the ability of a business to change rapidly in
response to varying economic conditions by producing high

quality goods and services. (see: Nikos C. Tsourveloudi , Kimon P.
Valavanis (2002). "On the Measurement of Enterprise Agility". Journal of Intelligent

and Robotic Systems 33: 329-342.)
(From: http://en.wikipedia.org/wiki/Business_Agility)

Agile software development is a conceptual framework for software engineering that promotes incremental

development iterations throughout the life-cycle of the project.
(The article: http://en.wikipedia.org/wiki/Agile_software_development offers a good first glance on agile software development.
Some of the following text is from this article)

"Agile software development" evolved in the mid 1990s as part of a reaction against "heavyweight" methods, as
typified by a heavily regulated, regimented, micro-managed use of the waterfall model of development. In
2001, prominent members of that community adopted the name "agile methods". Later, some of these people
formed "The Agile Alliance", a non-profit organization that promotes agile development. They created the
"Agile Manifesto", a canonical definition of agile development and accompanying agile principles.

Agile methods are a family of development processes, not a single approach to software development. Most of
them aim to minimize risk by developing software in short amounts of time by incremental iterations which
may last from one to four weeks. Each incremental iteration is a small entire software project including
planning, requirements analysis, design, coding, testing, and documentation with an available release (without
bugs) at the end of each iteration. At the end of each iteration, the team re-evaluates project priorities.

Agile methods emphasize face-to-face communication over written documents. Agile methods emphasize
working software as the primary measure of progress. Agile methods therefore produce very little written
documentation relative to other methods. This has resulted in criticism of agile methods as being undisciplined.
An answer to this criticism is, phrased by Alistair Cockburn as one of the "Agilistas", to see software
development as a ''cooperative game of communication and invention'. He grounded this view on Pelle
Ehn's "Work-Oriented Development of Software Artefacts"(1988) who considered software development in the
context of the philosophers Descartes, Marx, Heidegger and Wittgenstein. Considering this it turns out, that
software development can be understood as a "cooperative language game". This understanding changes the
character and importance of "documentation" dramatically: The documents are not longer (intermediate) result
of software development, they "only" serves as "design tools" (among others, like mock-ups and screen-
prototypes) to support the communication (e.g. between developers and users) to co-create a shared
understanding how the IT-application should work. The working application and not the documented
descriptions of requirements is the only relevant result of the design.

Seeing and DOING software design as a cooperative language game (=>
Wittgenstein) of communication and invention is one of the very important
bricks of that platform which is shared with SF.



Further key elements of Agile Software Development relating to SF:

>>> Principles behind the Agile Manifesto <<<
(see: http://www.agilemanifesto.org/principles.html)

e Qur highest priority is to satisfy the customer through early and continuous delivery of valuable
software.
=> small steps with observable effects / results
e Welcome changing requirements, even late in development. Agile processes harness change for the
customer's competitive advantage.
=>» Change is occurring all the time.

® Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to

the shorter timescale.

=>» Putting positive difference to work; Small Actions - tiny next steps that make big differences

® Business people and developers must work together daily throughout the project.
=>» In-between - the action is in the interaction

® Build projects around motivated individuals.

=> Clients are always cooperating. They are showing us how they think change takes place. As

we understand their thinking and act accordingly, cooperation is inevitable.
® Give them the environment and support they need, and trust them to get the job done.
=> People have all they need to solve problems

e The most efficient and effective method of conveying information to and within a development team is

Jace-to-face conversation.
=>» the action is in the interaction; Meaning and experience are interactional constructed. We
inform meaning onto our experience and it is our experience at the same time. Meaning is not

imposed from without or determined from outside of ourselves. We in-form our world through

interaction.
Working software is the primary measure of progress.
=> Make use of what's there - not what isn't. Not heavy concepts but small changes leads to
larger changing step by step.
Agile processes promote sustainable development.
=> Every case is different - beware ill-fitting theory
The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
=> the action is in the interaction
Continuous attention to technical excellence and good design enhances agility.
=>» Counters - whatever helps us forward; Affirm - what's already going well?
Simplicity -- the art of maximizing the amount of work not done -- is essential.
=» Radical simplicity
The best architectures, requirements, and designs emerge from self-organizing teams.
=>» the action is in the interaction
o At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behaviour accordingly.
=» Counters - whatever helps us forward; Affirm - what's already going well?

Further reading

http://www.agilealliance.org/ and http://apln.org/ and http://pmdoi.org
http://en.wikipedia.org/wiki/Agile_software_development

http://www.extremeprogramming.org/

Alistair Cockburn: Agile Software Development - The Cooperative Game (2nd Edition), Addison-Wesley
Professional; 2 edition (2006)
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The following text is part of this book:

Agile Software
Development o

The Cooperative Game
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THINKING INEXACT THOUGHTS

We don’t notice what is in front of us,
and we don’t have adequate names for
what we do notice. But it gets worse:
When we go to communicate, we don’t
even know exactly what it 1S we mean to
communicate. '

Pelle Ehn describes software design simi-

larly. Recognizing that neither the users

nor the designers could adequately iden-

tify, parse, and name their experiences, he

asked them to design by doing. In the article

reproduced in Appendix B he writes:

“The language-games played in
design-by-doing can be viewed both
from the point of view of the users
and of the designers. This kind of
design becomes a language-game in
which the users learn about possibili-
ties and constraints of new computer
tools that may become part of their
ordinary  language-games.  The
designers become the teachers that
teach the users how to participate in
this particular language-game of
design. However, to set up these
kinds of language-games, the design-
ers have to learn from the users.

“However, paradoxical as it
sounds, users and designers do not
have to understand each other fully
in playing language-games of
design-by-doing together. Participa-
tion in a language-game of design
and the use of design artifacts can

- make constructive but different sense

to users and designers.”

15
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SOME PHILOSOPHY ON BACKSTAGE

NAUR

From Peter Naur’s writing, we get the
idea that the team is working to create a
common theory for their work. In terms
of the Swamp Game (p. 49), the team
starts off not knowing what they are sup-
posed to build, where in the swamp to
build it, or what the layout of the swamp
is. The theory they are building is the
answer to those three questions.

Part of the communication aspect of the
cooperative game is establishing a shared
direction for the team and a shared view
of what the results need to look like. This
is called common vision in some writings.
Naur’s theory includes this idea and also
a common understanding of why the
thing is put together the way it is.

EHN

Common vision and common under-
standing of why the thing is put together
the way it is are both part of any coopera-
tive game, and most certainly our cooper-
ative games of invention and
communication.

Naur’s discussion of theory building as
a personal activity helps us to understand
modes of transmitting understanding
from one person to another. There is noth-
ing that says that written documentation
is the best way to convey understanding;
possibly it is the worst. If we take the
challenge to “convey understanding,”
then we can experiment with different
ways until we find some that work better.

From Pelle Ehn’s writing, we get the idea
that the understanding of the task to be
done may never be perfect, but it may
never need to be perfect. The magic lies in
the back-and-forth between developer
and user, creating new understanding
about the task at hand and the tools being
Created.,

Itis easy to look at Ehn's team’s assign-
ment from 1986 and think that we are
long past the days when people couldn’t

understand how the computer could help
them. However, every organization work-
ing on improving their organizational
process is faced with this problem. Until
the system gets delivered and put into
use, there is really no way that the users
can tell how the presence of the new sys-
tem will change the ways they work with
each other, and the ways they carry out
their jobs.
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Ehﬁ.thtgensteln'ﬂ Language Gamas * 407

g EHN, WITTGENS ’
PELLE - TEIN'S LANGUAGE GAMES

g wﬂrk,gm:ted Development of Software
tificts (Ehn 1988), Pelle Ehn describes a
oS of ijects that explored ways of
naking software more appropriate to its
qse, easier to use, and made by both
mers and end users.
Pm’[‘h ! high point of the book for me is the
way in which he considers software
Jevelopment in the context of four philos-
ath Descartes, Marx, Heidegger, and
Wittgenstein.

A person working in the style of Des-
grtes thinks of an external reality worth
describing and turns her efforts toward
apturing that reality. She is therefore
‘nterested in the match to reality of the
rquirements, models, and code. This
Carfesian approach filled our field’s first
halfcentury.

henefit? How dloes its deployment change

[? 15 ?ﬂl}?_ the style of Wittgenstein that
OPposes the style of Descartes. A person
working in this style views the unfolding
of the software design as the unfolding of
alanguage game, in which new words are
added to the language over time.

This immediately links to software
Flevelnpmﬂnt as a cooperative game of
invention and communication. [ proba-
bly owe a good deal of my construction of
the cooperative game model to Ehn's
writings. I had read and forgotten the fol-
lowing article years before working out
the cooperative game idea. As | started to
write this book, I reviewed this article and
was shocked to see how many of my
words echoed Ehn's. :

Ehn is concerned with the building of
shared experience through shared prac-
tice, of using practice directly as a basis
for discovering needs. In other words, he
is working with tacit knowledge. More
than that, he highlights the place of skill in
read Musashi’s words pointing out much
the same). Although skill is a topic [ have
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Against this background, we can
understand the design of computer
applications as a concerned social- and
historical-conditioned activity in which
tools and their use are envisioned. This is
an activity and form of knowledge that is
both planned and creative.

Once struck by the “naive” Cartesian
presumptions of a picture theory, what
can be gained in design by shifting focus
from the correctness of descriptions to
intervention into practice? What does it
imply to take the position that what a pic-
ture describes is determined by its use?
Most importantly, it sensitizes us to the cru-
cial role of skill and participation in design,
and to the opportunity in practical design
to transcend some of the limits of formal-
ization through the use of more action-

oriented design artifacts.

g
L#&ﬂﬁhﬂgnﬂge as Action

e = ¥ %ok t..uun__ux,\:.

To master the professional language of
chairmaking means to be able to act in an
effective way together with other people
who know chairmaking. To “know” does
not mean explicitly knowing the rules
you have learned, but rather recognizing
when something is done in a correct or
incorrect way. To have a concept is to
have learned to follow rules as part of a
given practice. Speech acts are, as a un‘ity
of language and action, part of practice.
They are not descriptions but below I will

L= e = e R
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The rejection of an emphasis on the
“correctness” of descriptions 1'- t‘spm‘.mll}j
important. In this, we are advised by the
author of perhaps the strongest argu-
ments for a picture theory and the Carte-
sian approach to dﬂsign—thf: }TL.I“S
Wittgenstein in Tractatus Luglcc?-l hf_lu-
sophicus (1923). The reason for this rejec-
tion is the fundamental role of practical
knowledge and creative rule following in
language-games.

Nevertheless, we know that systems
descriptions are useful in the language-
game of design. The new orientation sug-
gested in a Wittgensteinian approach is
that we see such descriptions as a special
kind of artifact that we use as “typical
examples” or “paradigm cases.” They are
not models in the sense of Cartesian mirror
images of reality (Nordenstam, 1984). In1 the
language-game of design, we use these tools as
reminders for our reflection on future com-
puter applications and their use. By using
such design artifacts, we bring earlier experi-

ences to mind, and they bend our way of

thinking of the past and the future. 1 think
that this is why we should understand
them as representations (Kaasboll, forth-
coming). And this is how they inform our
practice. If they are good design artifacts,
they will support good moves within a specific
design language-game.

_ The meaning of a design artifact is its use
in a design language-game, not how it “miy-
?"B?'S mﬂiﬂy” Its ﬂblhh{ to sumnnrt ciicl siaa
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Finding a solu-
tion that works adequately in a particular

i reframing the problem
over and over as more 15 learned about th_e
material, the problem, and the set of possi-

le solutions.
F eDonald Gchon, a professor at MIT,

refers to this constant reframing as haffing
a “reflective conversation w_lt‘h the situa-
tion.” In The Reflective Practitioner (Schén
1983), he catalogs, among others, chemi-
cal engineers tackling a new problem.,

These chemical engineering graduate stu-
dents were asked to create a manufactur-

ing process to replicate a particular patina
on china that came from the use of cow
bone, which would soon become unavail-
able. The students progressed through
three stages in their work:

« They tried using chemical theory to
work out the reactions that were hap-
pening with the bone so that they
could replicate them. They got com-
pletely bogged down using this
approach.

* Abandoning theory as too difficult,
they next experimented with pro-
cesses in whatever form they could
think up. This also got them nowhere.

* Finally, their professor coached them
not to replicate the bone process but to
Fievise a process that resulted in a sim-
ilar effect. They combined bits of the-
ory with experiments to make
mmcremental progress, getting one cat-
egory of improvement at a time and

reducing the search space for future
work.

;Fheu_- t]’lil:d sta_ge shows their reflective
nnverfsatmn w_lth the situation. As they

T
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COMMUNICATE & RADIATE "OSMOTIC'":

2 The wording in the Posters Mmatters,
One XP team had posted “Things we diq
wrong last increment.” Another had
posted “Things to work on this incre.
ment.” Imagine the difference in the
projects: The first one radiated guilt into
the project room and was, not surpris-
ingly, not referred to very much by the
project team. The second one radiates
promise. The people on the second team
referred to their poster quite frequent]
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m.l.; r:;}gr Cimers give mixed reviews to
outside-of-work team-building exercises,
Several said, roughly, “I'm not interested in
whether we can barbeque together or
climb walls together. I'm interested in
whether we can produce software

What does build teams? Luke Hohmann
offered this observation in an e-mail note:

“The best way to build a team is by
having them be successful in pro-
dﬂﬂlrgmsults. Small ones, big ones.

% It doesn't matter. This belief has
empirical support; see, tor instam:e,
Brown (1990). Fuzzy team building
is (IMO) almost always a waste of
time and money.”

Support for this is also found in Weick’s
description of the importance of “small
wins” (Weick 2001) as well as in inter-
views of successful project managers.

One successful project manager told of
a key moment when the project morale
and “team”-ness improved. We found the
following elements in the story:

* The people, who sat in different loca-
tions, met each other face to face.

* Together, they accomplished some sig-
nificant result that they could not have
achieved without working together.

* At some point, they placed them-
selves in some social jeopardy (ven-
turing new thoughts, or admitting
ignorance) and received support from
the group when they might have been

- attacked.

—— "
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SOCIAL CONSTRUCTED METHODOLOGY:

P

«Methodology 1s a social construction”
Ralph Hodgson told me in 1993. Two
years went by before I started to
understand.

Your “methodology” is everything you
regularly do to get your software out. It
includes who you hire, what you hire
them for, how they work together, what
they produce, and how they share. It is
the combined job descriptions, proce-
dures, and conventions of everyone on
your team. It is the product of your partic-
ular ecosystem and is therefore a unique

construction of your organization.
Boil and condense the subject of meth-

odology long enough and you get this
one-sentence summary: “A methodology
is the conventions that your group agrees

=S
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o index cards-
ers nego-
the next

for the iteration onto simpl

The customer(s) and programit

tiate what will get done I

jteration in the following Way:

« The programmers estimate the time t0
complete each card. |

. The customers prioritize, alter, and
de-scope as needed so that the most
valuable stories are most likely to get
done in the allotted time period.

The programmers write the tasks for each
story on flipcharts on the wall or a white-
board, estimating the time they will need
for each task. Over time, the customers
and programmers can reprioritize or de-
scope the tasks or stories.
Development on a story starts with the
programmers discussing the story with
the expert customer. Because this discus-
sion is guaranteed to take place, the text
written on the story card can be very
to remind everyone
is o

A

these integrations, they ensure that
entire code base passes all unit tests, he

At any time, any two Programmer ¢
ting together may change any line gf 4
in the system. In fact, they are gupp{éﬂd
fo. Anytime the two find a section of C;;d
that appears hard to understand o m,EﬂE
complex, they are to revise it, anﬁam]}i
simplifying and improving it. Atall [f_mez
they are to keep the overall design as gy,
ple as they can and the code as clear 4
they can. This constant refactoring is pos-
sible because of the extensive unit fey
suites in place. It is also possible because
the programmers rotate pair assignmens
every day or so, and so knowledge of the
changes in the code structure passes
through the group through the shifting
parinerships.

While the ers are working
the customers are doing three things: They
visit with the programmers to i
ideas, they write system acceptance tet
to be run during and at the end of thei®"
ation, and they select stories to be builtfor
ﬁ'ﬁ next iteration may be on the
project full time or not, as they decide:
| '_I-'.tie- team holds a stand-up ﬂ'leéllﬂﬁ_
every day, in which they describe ¥
they are working on, what i 'Wﬂrhﬂ:g
well for them, and what they might
help with. The meeting is held stand/®
upto ond of each i

S
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ahead and make improvements to the sys-
tem at any time.

One person on the team is designated
the “coach” for the team. This person
reviews with the team members their use
of the key practices: use of pair program-
ming and testing, pair rotation, keeping
design simple, communicating, and so on.

WRAPPING UP:

N et

e implies being effective and manei-
feg;;c;jllrineagﬂe pgr_ocess is both light and
sufficient. The lightness is a means 0
staying maneuverable. The sufficiency 18
a matter of staying in the game. _

The question for using agile metbn'dul—
ogies is not, “Can an agile me‘thadﬂlogy
be used in this situation?” but “How can
we remain agile in this situation?”

It seems the important questimn;q;

ask are:

AGILE

I. How does this technique work?

2. Why does this technique wnrk};

3. How is this technique relateqd to
other techniques that [ am prac-
ticing?

4. What are the necessary precondi-
tions and postconditions to effec.
tively apply this technique in the
combative situation? . . |

ﬁs you develop a reasonable reper-
toire of techniques that you can per-
form correctly, you will need to
XPOse yourself to as broad a range
of practitioners as possible. As you
watch others, you need to ask and
dnswer at least three questions:

; Wl‘uch other practitioners do !
fespect and admire?

2. HDW 1S what they do different
from what [ 4o?

3 How cap | change my practice
.{bﬂt-h' mental mode] and attempt*
40 COIrespond to it) to incorp?
Tate the differences that I thi
AT most importants ...




SevEN PROPERTIES OF HIGHLY
SuccesSFUL PROJECTS

s Frequent Delivery. Have we delivered
running, tested, and usable code at
least twice to our user community in
the last six months?

Reflective Improvement. Did we get
together at least once within the last
three months for a half hour, hour, or
half day to compare notes, reflect, dis-
cuss our group’s working habits, and
discover what speeds us up, what
slows us down, and what we might be
able to improve?

Close | Osmotic Communication. For
Crystal Clear projects: Does it take us
30 seconds or less to get our question
to the eyes or ears of the person who
might have the answer? Do we over-
hear something relevant from a con-
versation among other team members
at least every few days? For other
Crystal colors, replace those specific
times with an inquiry into how long it
takes to get a question to the right per-
son, and the frequency of serendipi-
tous discovery.

* Personal Safety. Can we tell our boss

we misestimated by more than 50 per-
cent or that we just received a tempt-
ing job offer? Can we disagree with
him or her about the schedule in a
team meeting? Can we end long
debates about each other’s designs
with friendly disagreement?

Focus. Do we all know what our top
two priority items to work on are? Are
we guaranteed at least two days in a
row and two uninterrupted hours
each day to work on them?

Easy Access to Expert Users. Does it
take less than three days, on the aver-
age, from when we come up with a
question about system usage to when
an expert user answers the question?
Can we get the answer in a few hours?
Techrnical Environment with Automated
Tests, Configuration Management, and
Frequent Integration. Can we run the
system tests to completion without
having to be physically present? Do
all our developers check their code
into the configuration management
system? Do they put in a useful note
about it as they check it in? Is the sys-
tem integrated at least twice a week?
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TECHNIQUES A DISCRETION

~ Here is short summary of interest
| gqatﬁgmsand techniques for you to 5-.::;:1-
sider:
S wploratory 360". Pre-project safety
check. In a few days or a few weeks
~sample the project’s business value:
: llt;gj? uirements, domain model, technol-
.',Ei'_ ‘ogy plans, project plan, team makeup,
- and methodology.
_%ﬁr Victory. Small wins help a group
;' elop strength and confidence.
ange for some early in the project.
keleton is a great start.
1g Skeleton. A tiny implementa-
f the system that performs a
1d-to-end function. It need not
the final architecture, but it should
the main architectural compo-

re in stages, keeping the sys-

g as you go. This applies
he Walking Skeleton and to
il ﬁ

ng to ask anyone a
y it is large, visible to
rver, easily kept up to
rstandable at a glapcg,
periodically so that 1t 15

s : 2. Tw
Sit side-by-side but at diﬁereﬁtpxi?)];t

stati rorks
maei:?;lﬁ:nwurkmg on 'different assign-
1€ Workstations need to b

close enough that each person :
read the other’s Wworkstation 5'mea;n
?}’Hmrﬂf‘ng her head (60 cm-90 cm?o};
nzee;efi,l They help each other as
Test-Driven Development. The test, or
Exa'tu_table example, is written before
deciding how to design the code. It
serves both as a specification of what
to design and as a practice run at
using the call sequence to the func-
tion. Also called XXD (see page 275).
Blitz Planning. An index card-based
planning session in which the spon-
sor, business expert, expert user, and
developers together build the project
map and timeline. Unlike XP’s Plan-
ning Game, the cards in the Blitz Plan-
ning technique show tasks and task
dependencies.
Daily Stand-up Meeting. Everyone in
the team meets, standing, for a maxi-
mum of 10 minutes to announce what
they each are working on and where
they are getting stuck.

le Interaction Design. A one- or two-
day sticky note and index card-based
system usage modeling session, based
on the ideas in Software for Use o
stantine 1999). Described In Eation

2003).
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AGILITY BEYOND SW-DEVELOPMENT:

THE DECLARATION OF INTERDEPENDENCE

As the manifesto grew 1n significance,
people asked

* What is the corresponding version for
non-software product development?

» What is the corresponding set of prin-
ciples and values for management?

Jim Highsmith notes that to understand
the agile manifesto for products at large
instead of just software, simply replace
the word product for the word soffware in
the manifesto, and the manifesto is still
clear and correct:

Working products over comprehen-
sive documentation;

Indeed, this is evidenced by the myriad
applications of the agile values and prin-
ciples outside of software already dis-
cussed in this book. Reread, in particular,
Mike Collins’ sidebar (p. 323) to see how
lean manufacturing already anticipated
what we wanted to say.

On the management side, a number of
people voiced an interest in exploring the
extension of the agile manifesto to project

—

management and product df.—_‘velﬂpn-m]“
outside software. We held the first Miept
ing to explore tha_nl topic at the A il
Development Cmntm‘fcncff in 2004, Thy
group met twice more, finally on Febiry-
ary 1, 2005, writing the six points of the
Declaration of Interdependence, or DOJ:

e

“We increase return on investment
by making continuous flow of value
our focus.

We deliver reliable results by
engaging customers in frequent inter-
actions and shared ownership.

We manage uncertainty through
iterations, anticipation, and adaptation.

We unleash creativity and inno-
vation by recognizing that individu-
als are the ultimate source of value and
by creating an environment where they
can make a difference.

We boost performance through
group accountability for results and
shared responsibility for team effective:
ness. |

We improve effectiveness and fEh
ability through situationally specifi

strategies, processes, and practices.”

i
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